精英家教网 > 高中数学 > 题目详情
12.下列说法中
①命题“存在x∈R,2x≤0”的否定是“对任意的x∈R,2x>0”;
②y=x|x|既是奇函数又是增函数;
③关于x的不等式a<sin2x+$\frac{2}{si{n}^{2}x}$恒成立,则a的取值范围是a<3;
其中正确的个数是(  )
A.3B.2C.1D.0

分析 ①,含有量词的命题的否定,先换量词,再否定结论;
②,y=x|x|=$\left\{\begin{array}{l}{{x}^{2}\\;\\;(x≥0)}\\{-{x}^{2}\\;\\;(x<0)}\end{array}\right.$,结合图象可判定既是奇函数又是增函数;
③,∵函数y=x+$\frac{2}{x}$在(0,1]上是减函数,所以sin2x+$\frac{2}{si{n}^{2}x}$的最小值为3;

解答 解:对于①,含有量词的命题的否定,先换量词,再否定结论,故正确;
对于②,y=x|x|=$\left\{\begin{array}{l}{{x}^{2}\\;\\;(x≥0)}\\{-{x}^{2}\\;\\;(x<0)}\end{array}\right.$,结合图象可判定既是奇函数又是增函数,故正确;
对于③,∵函数y=x+$\frac{2}{x}$在(0,1]上是减函数,所以sin2x+$\frac{2}{si{n}^{2}x}$的最小值为3,关于x的不等式a<sin2x+$\frac{2}{si{n}^{2}x}$恒成立,则a的取值范围是a<3,正确;
故选:A:

点评 本题考查了命题真假的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的$\frac{2}{3}$倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润.该公司如何正确规划投资,才能在这两个项目上共获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆的一个焦点与两顶点为等边三角形的一个顶点,则该椭圆的长轴长是短轴长的(  )
A.$\sqrt{3}$倍B.2倍C.$\sqrt{2}$倍D.$\frac{3}{2}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义在R上的奇函数f(x)的导函数为f'(x),且f(-1)=0,当x>0时,xf'(x)-f(x)<0则不等式f(x)<0的解集为(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-1|+|x+1|,M为不等式f(x)≤4的解集.
(1)求集合M.
(2)当a,b∈M时,求证$2|{a-b}|≤\sqrt{16-7{a^2}{b^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-alnx在区间(1,2]内是增函数,g(x)=x-a$\sqrt{x}$在区间(0,1)内是减函数.
(1)求f(x)、g(x)的表达式;
(2)求证:当x>0时,方程f(x)-g(x)=x2-2x+3有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和Tn.若${T_n}≤\frac{2014}{2015}$,求整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三个点A(0,0),B(2,0),C(4,2),则△ABC的外心的纵坐标是(  )
A.$\frac{3}{2}$B.3C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x+a)2ex+b(a,b∈R)在x=1处取得极小值-1
(Ⅰ)求a,b的值
(Ⅱ)证明:x>0时,f(x)>lnx-$\frac{3}{2}$x2-2x.

查看答案和解析>>

同步练习册答案