分析 利用向量数量积的坐标运算与向量垂直的关系即可得出.
解答 解:$\overrightarrow{a}+\overrightarrow{b}$=(m+2,m-6),
$\overrightarrow{a}-\overrightarrow{b}$=(m,-m),
∵($\overrightarrow{a}+\overrightarrow{b}$)⊥($\overrightarrow{a}-\overrightarrow{b}$),
∴($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}-\overrightarrow{b}$)=m(m+2)-m(m-6)=0,
解得m=0.
∴m=0.
点评 本题考查了向量数量积的坐标运算与向量垂直的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=-2sinx | B. | f(x)=2sinx | ||
C. | f(x)=$\frac{\sqrt{2}}{2}$sin2x | D. | f(x)=$\frac{\sqrt{2}}{2}$(sin2x+cos2x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | $\sqrt{29}$ | C. | $3\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p是假命题,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | B. | p是假命题,¬p:?x0∈(0,$\frac{π}{2}$),f(x)≥0 | ||
C. | p是真命题,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | D. | p是真命题,¬p:?x0∈(0,$\frac{π}{2}$),f(x)≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第4名学生操作了n台设备 | B. | 第4名学生操作了3台设备 | ||
C. | 第3名学生操作了n台设备 | D. | 第3名学生操作了4台设备 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com