精英家教网 > 高中数学 > 题目详情

【题目】用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:
(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.

【答案】
(1)解:所有可能的基本事件共有27个,如图所示.

记“3个矩形都涂同一颜色”为事件A,由图知,事件A的基本事件有1×3=3个,故P(A)=


(2)解:记“3个矩形颜色都不同”为事件B,由图可知,事件B的基本事件有A33=2×3=6个,故P(B)=
【解析】(1)所有可能的基本事件共有27个,3个矩形颜色都相同,可以为红、黄、蓝三种颜色,共有3种情况,根据古典概型概率公式即可求得结果;(2)3个矩形颜色都不同共有A33=6种情况,根据古典概型概率公式即可求得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x的图象向左平移 个单位后得到函数g(x)的图象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的满足 ,则φ的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱 ABCD﹣A1B1C1D1中,底面为平行四边形,以顶点 A 为端点的三条棱长都相等,且两两夹角为 60°.则线段 AC1与平面ABC所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx+ax2+x+1.

(I)a=﹣2时,求函数f(x)的极值点;

(Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=an+n﹣3成立.

(Ⅰ)求证:{an﹣1}为等比数列;

(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从盛满2升纯酒精的容器里倒出1升,然后加满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒次后才能使纯酒精体积与总溶液的体积之比低于10%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人射击一次命中7~10环的概率如下表

命中环数

7

8

9

10

命中概率

0.16

0.19

0.28

0.24

计算这名射手在一次 射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.

查看答案和解析>>

同步练习册答案