精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 ,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求二面角A1﹣BD﹣A的大小;
(3)求直线AB1与平面A1BD所成的角的正弦值.

【答案】
(1)解:设AB1与A1B相交于点P,连接PD,则P为AB1中点,

∵D为AC中点,∴PD∥B1C.

又∵PD平面A1BD,B1C平面A1BD

∴B1C∥平面A1BD


(2)解:∵正三棱住ABC﹣A1B1C1

∴AA1⊥底面ABC.

又∵BD⊥AC

∴A1D⊥BD

∴∠A1DA就是二面角A1﹣BD﹣A的平面角.

∵AA1= ,AD= AC=1

∴tan∠A1DA=

∴∠A1DA= ,即二面角A1﹣BD﹣A的大小是


(3)解:由(2)作AM⊥A1D,M为垂足.

∵BD⊥AC,平面A1ACC1⊥平面ABC,平面A1ACC1∩平面ABC=AC

∴BD⊥平面A1ACC1

∵AM平面A1ACC1

∴BD⊥AM

∵A1D∩BD=D

∴AM⊥平面A1DB,连接MP,则∠APM就是直线A1B与平面A1BD所成的角.

∵AA1= ,AD=1,∴在Rt△AA1D中,∠A1DA=

∴AM=1×sin60°= ,AP=AB1=

∴sin∠APM=

∴直线AB1与平面A1BD所成的角的正弦值为


【解析】(1)由题意及题中P为AB1中点和D为AC中点,中点这样信息,得到线线PD∥B1C平行,在利用PD平面A1BD线面平行,利用线面平行的判定定理得到线面B1C∥平面A1BD平行;(2)有正三棱柱及二面角平面角的定义,找到二面角的平面角,然后再三角形中解出二面角的大小;(3)利用条件及上两问的证题过成找到∠APM就是直线A1B与平面A1BD所成的线面角,然后再三角形中解出即可.
【考点精析】通过灵活运用直线与平面平行的判定和空间角的异面直线所成的角,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +a(a∈R)为奇函数
(1)求a的值;
(2)当0≤x≤1时,关于x的方程f(x)+1=t有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kax﹣ax(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈[1,2],x2≥a;命题q:x∈R,x2+2ax+2﹣a=0,若命题p∧q是真命题,则实数a的取值范围是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)图象上不同两点A(x1 , y1),B(x2 , y2)处的切线的斜率分别是kA , kB , 规定φ(A,B)= 叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题: 1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>
2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;
4)设曲线y=ex上不同两点A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);
以上正确命题的序号为(写出所有正确的)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,且当x>0时,f(x)=x2+ ,则f(﹣1)=(
A.2
B.1
C.0
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).
(1)求f(1),f(﹣1)的值;
(2)求证:y=f(x)为偶函数;
(3)若y=f(x)在(0,+∞)上是增函数,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的定义域和值域;
(2)若f(x)≤1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,A={x|2x2﹣x=0},B={x|mx2﹣mx﹣1=0},其中x∈R,如果(UA)∩B=,求m的取值范围.

查看答案和解析>>

同步练习册答案