精英家教网 > 高中数学 > 题目详情
已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是(  )
A.3B.4C.5D.6
B
圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,
∵|PF|≥|CF|-1,
∴当P、C、F三点共线时,|PF|取到最小值,
由y2=4x知F(1,0),
∴|PF|min=-1=4.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).
(1)求动点P的轨迹方程;
(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点和定直线,动点与定点的距离等于点到定直线的距离,记动点的轨迹为曲线.
(1)求曲线的方程.
(2)若以为圆心的圆与曲线交于不同两点,且线段是此圆的直径时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=2px(p>0)上一点P到焦点和抛物线的对称轴的距离分别为10和6,则p的值为(  )
A.2B.18
C.2或18D.4或16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于(  )
(A)    (B)    (C)       (D)2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线y2=2px的焦点坐标为(1,0),则p=    ;准线方程为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线方程是
A.B.C.D.

查看答案和解析>>

同步练习册答案