·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÉ϶¥µãΪA£¬ÒÔAPΪֱ¾¶µÄÔ²¾¹ýÍÖÔ²CµÄÓÒ½¹µãF2£®P£¨$\frac{4\sqrt{2}}{3}$£¬$\frac{b}{3}$£©ÊÇÍÖÔ²CÉϵÄÒ»µã£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪx=my+$\sqrt{2}$£¬ÓÉ$\left\{\begin{array}{l}{x=my+\sqrt{2}}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$£¬µÃ$£¨{m}^{2}+2£©{y}^{2}+2\sqrt{2}my-2=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÍÖÔ²¶¨Ò塢ҪʹÄÚÇÐÔ²Ãæ»ýS×î´ó£¬Ö»ÐèÒªÇó¡÷F1MNµÄÃæ»ýS¡ä×î´ó£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öµ±SÈ¡×î´óֵʱֱÏßlµÄ·½³Ì£¬²¢ÄÜÇó³ö×î´óÖµ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µãΪA£¬ÒÔAPΪֱ¾¶µÄÔ²¾¹ýÍÖÔ²CµÄÓÒ½¹µãF2£®
¡àF2£¨c£¬0£©£¬A£¨0£¬b£©£¬P£¨$\frac{4\sqrt{2}}{3}£¬\frac{b}{3}$£©£¬
¡à$\overrightarrow{{F}_{2}A}•\overrightarrow{{F}_{2}P}$=£¨-c£¬b£©•£¨$\frac{4\sqrt{2}}{3}$-c£¬$\frac{b}{3}$£©=c2-$\frac{4\sqrt{2}}{3}c$+$\frac{{b}^{2}}{3}$=0£¬
¡ßP£¨$\frac{4\sqrt{2}}{3}$£¬$\frac{b}{3}$£©ÊÇÍÖÔ²CÉϵÄÒ»µã£¬
¡à$\frac{32}{9{a}^{2}}+\frac{{b}^{2}}{9{b}^{2}}=1$£¬½âµÃa=2£¬
¡ßa2=b2+c2£¬½âµÃc=$\sqrt{2}$£¬b=$\sqrt{2}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1£®
£¨2£©ÓÉÌâÒâÖ±ÏßlµÄбÂʲ»Îª0£¬ÉèÖ±ÏßlµÄ·½³ÌΪx=my+$\sqrt{2}$£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{x=my+\sqrt{2}}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$£¬µÃ$£¨{m}^{2}+2£©{y}^{2}+2\sqrt{2}my-2=0$£¬
y1+y2=$\frac{-2\sqrt{2}m}{{m}^{2}+2}$£¬y1y2=$\frac{-2}{{m}^{2}+2}$£¬
ÉèÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬¡÷F1MNµÄÖܳ¤ÎªC£¬Ãæ»ýΪS¡ä£¬
¡ßS¡ä=$\frac{1}{2}Cr$£¬
ÓÉÍÖÔ²¶¨ÒåµÃC=4a=8£¬¡àS¡ä=4r£¬
ҪʹÄÚÇÐÔ²Ãæ»ýS×î´ó£¬Ö»ÐèÒªÇó¡÷F1MNµÄÃæ»ýS¡ä×î´ó£¬
¡÷F1MNµÄÃæ»ýΪ£º
S¡ä=$\frac{1}{2}¡Á2c¡Á|{y}_{1}-{y}_{2}|$=$\sqrt{2}\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{2[£¨\frac{-2\sqrt{2}m}{{m}^{2}+2}£©^{2}-4•\frac{-2}{{m}^{2}+2}]}$=$\frac{4\sqrt{2}•\sqrt{{m}^{2}+1}}{{m}^{2}+2}$£¬
Áît=$\sqrt{{m}^{2}+1}$£¬t¡Ý1£®
S¡ä=$\frac{4\sqrt{2}t}{{t}^{2}+1}$=$\frac{4\sqrt{2}}{t+\frac{1}{t}}$$¡Ü2\sqrt{2}$£¬
µ±ÇÒ½öµ±t=1£¬¼´m=0ʱȡµÈºÅ£¬
´Ëʱr=$\frac{\sqrt{2}}{2}$£¬S=¦Ðr2=$\frac{¦Ð}{2}$£¬
Ö±ÏßlµÄ·½³ÌΪx=$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµ±Èý½ÇÐεÄÄÚÇÐÔ²µÄÃæ»ýÈ¡×î´óֵʱֱÏßlµÄ·½³Ì¼°Õâ¸ö×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨2£¬+¡Þ£© | B£® | £¨2£¬5] | C£® | £¨1£¬2£© | D£® | £¨1£¬5] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-2£¬0£© | B£® | £¨-1£¬0£© | C£® | £¨-1£¬1£© | D£® | £¨0£¬1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¼× | B£® | ÒÒ | C£® | ±û | D£® | ¶¡ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com