分析 (1)令f(x)=0,可得函数f(x)的零点.
(2)当m=-1时,g(x)=$\frac{1}{2}-\frac{1}{f(x)}$=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$,利用奇函数的定义证明即可.
解答 解:(1)当m=8时,2x-8=0,∴x=3,
∴函数f(x)的零点是x=3.
(2)当m=-1时,g(x)=$\frac{1}{2}-\frac{1}{f(x)}$=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$为奇函数,
证明如下:函数的定义域为R,
g(-x)=$\frac{1}{2}$-$\frac{1}{{2}^{-x}+1}$=-($\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$)=-g(x),
∴函数g(x)是奇函数.
点评 本题考查函数的零点、奇偶性,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | a(1+r)13 | B. | a(1+r)14 | C. | a(1+r)15 | D. | a+a(1+r)15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com