精英家教网 > 高中数学 > 题目详情

【题目】2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.

方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.

方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.

(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;

(2)若某顾客恰好获得1次抽奖机会.

①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;

②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?

【答案】(1) (2) ①见解析②该顾客选择第一种抽奖方案更合算

【解析】试题分析:(1)由图可知,每一次转盘指向60元对应区域的概率为设“每位顾客获得180元现金奖励”为事件,则结合乘法概率公式得到这两位顾客均获得180元现金优惠的概率;

(2)①方案一 可能的取值为60,100,140,180 方案二 ,故

由①知,所以该顾客选择第一种抽奖方案更合算.

试题解析:

(1)选择方案一,若要享受到180元的现金优惠,则必须每次旋转转盘都指向60元对应的区域, 由图可知,每一次转盘指向60元对应区域的概率为.

设“每位顾客获得180元现金奖励”为事件

所以两位顾客均获得180元现金奖励的概率为.

(2)①若选择抽奖方案一,则每一次转盘指向60元对应区域的概率为,每一次转盘指向20元对应区域的概率为.

设获得现金奖励金额为元,

可能的取值为60,100,140,180.

.

所以选择抽奖方案一,该顾客获得现金奖励金额的数学期望为(元).

若选择抽奖方案二,设三次转动转盘的过程中,指针指向白色区域的次数为,最终获得现金奖励金额为元,则,故

所以选择抽奖方案二,该顾客获得现金奖励金额的数学期望为(元).

②由①知

所以该顾客选择第一种抽奖方案更合算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点

)求椭圆的方程;

)是否存在过点的直线相交于不同的两点,满足

若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,对任意nN*总有2Snan2+n,且anan+1.若对任意nN*,θR,不等式λn+2)恒成立,求实数λ的最小值( )

A.1B.2C.1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是各项不为零的数列,且满足,其中是数列的前项和,是公差为的等差数列.

1)若数列的通项公式分别为,求数列的通项公式;

2)若是不为零的常数),求证:数列是等差数列;

3)若为常数,),),对任意,求出数列的最大项(用含式子表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的图象如图所示,过点

)求函数的单调递减区间和极大值点;

)求实数的值;

)若恰有两个零点,请直接写出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且有极大值.

(Ⅰ)求的解析式;

(Ⅱ)若的导函数,不等式为正整数)对任意正实数恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·沧州质检]对于椭圆,有如下性质:若点是椭圆上的点,则椭圆在该点处的切线方程为.利用此结论解答下列问题.点是椭圆上的点,并且椭圆在点处的切线斜率为

(1)求椭圆的标准方程;

(2)若动点在直线上,经过点的直线与椭圆相切,切点分别为.求证:直线必经过一定点.

查看答案和解析>>

同步练习册答案