精英家教网 > 高中数学 > 题目详情
已知命题p:
1
4
2
x
 
1
2
,命题q:x+
1
x
∈[-
5
2
,-2]
,则下列说法正确的是(  )
分析:由题设知:命题p:-2≤x≤-1,命题q:-2≤x≤-
1
2
,由此得到p是q的充分不必要条件,
解答:解:∵命题p:
1
4
2
x
 
1
2
,∴命题P:-2≤x≤-1,
∵命题q:x+
1
x
∈[-
5
2
,-2]
,∴-2≤x≤-
1
2

∴p是q的充分不必要条件,
故选B.
点评:本题考查充分条件、必要条件、充要条件的判断和应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)已知可导函数f(x),x∈D,则函数f(x)在点x0处取得极值的充分不必要条件是f′(x0)=0,x0∈D.
(2)已知命题P:?x∈R,sinx≤1,则¬p:?x∈R,sinx>1.
(3)已知命题p:
1
x 2-3x+2
>0
,则¬p:
1
x 2-3x+2
≤0

(4)给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根.如果P∧Q为假命题,P∨Q为真命题,则实数a的取值范围是(-∞,0)∪(
1
4
,4)

其中所有真命题的编号是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2-x+
1
4
<0,命题q:?x∈R,sinx+cosx=
2
,则下列判断正确的是(  )
A、p是真命题
B、q是假命题
C、?p是假命题
D、¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:任意x∈R,x2-x+
1
4
<0;命题q:存在x∈R,sinx+cosx=
2
.则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于并的方程戈x2-x+a=0无实根,命题q:关于x的函数y=-x2-ax+1在[-1,+∞)上是减函数.若?q是真命题,p∨q是真命题,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案