精英家教网 > 高中数学 > 题目详情
16.定义区间[a,b]的区间长度为b-a,如图是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度所处的区间[a,b].(要求区间长度为$\frac{1}{2}$)

分析 以O为原点,AB方向为x轴方向建立坐标系,则圆心在y轴,设圆心坐标,可得圆弧的方程;将x=-2代入圆方程,可求支柱A2P2的高度.

解答 解:以O为原点,AB方向为x轴方向建立坐标系,则圆心在y轴,设圆心坐标(0,a).P(0,4),A(-10,0)
所以有(a-4)2=a2+100,得a=-10.5,
所以圆方程为x2+(y+10.5)2=14.52(-10≤x≤10,y≥0);
将x=-2代入圆方程,得:y=A2P2≈3.86米.

点评 本题考查圆的方程,考查学生的计算能力,确定圆心坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.圆O的直径为BC,点A是圆周上异于B,C的一点,且|AB|•|AC|=1,若点P是圆O所在平面内的一点,且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值为(  )
A.2$\sqrt{3}$B.9C.76D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为8,且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1的直线l交椭圆于M、N两点,且该椭圆上存在点P,使得四边形MONP(图形上的字母按此顺序排列)恰好为平行四边形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-2ax+3a-4在区间(-1,1)上有一个零点.
(1)求实数a的取值范围;
(2)若a=1,用二分法求f(x)=0在区间(-1,1)上的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义域为R的函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(1)求a、b的值;
(2)若对任意的x∈R,不等式f(x2-x)+f(2x2-t)<0恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设椭圆$\frac{x^2}{3}+\frac{y^2}{2}$=1右焦点为F2,点P是圆x2+y2-6x+8=0上的动点,则PF2的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆4x2+y2=16的长轴长等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{t}{x}$有如下性质:如果常数t>0,那么该函数在$(0,\sqrt{t}]$上是减函数,在$[\sqrt{t},+∞)$上是增函数.
(1)已知f(x)=$\frac{{{x^2}-2x-4}}{x+2}$,x∈[-1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[-1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$f(x)={x^{\frac{1}{3}}}-{({\frac{1}{2}})^x}$,其零点所在区域为(  )
A.$({0,\frac{1}{3}})$B.$({\frac{1}{3},\frac{1}{2}})$C.$({\frac{1}{2},1})$D.(2,3)

查看答案和解析>>

同步练习册答案