精英家教网 > 高中数学 > 题目详情
如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.
(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE,….(2分)
∵BE∩PE=E,∴DE⊥平面PEB,
又∵PB?平面PEB,∴BP⊥DE;….(4分)
(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,
∴分别以DE、BE、PE所在直线为x轴、y轴、z轴建立空间直角坐标系(如图),…(5分)
设PE=a,则B(0,4-a,0),D(a,0,0),C(2,2-a,0),
P(0,0,a),…(7分)
可得
PB
=(0,4-a,-a)
BC
=(2,-2,0)
,…(8分)
设面PBC的法向量
n
=(x,y,z)

(4-a)y-az=0
2x-2y=0
令y=1,可得x=1,z=
4-a
a

因此
n
=(1,1,
4-a
a
)
是面PBC的一个法向量,…(10分)
PD
=(a,0,-a)
,PD与平面PBC所成角为30°,…(12分)
sin30°=|cos<
PD
n
>|
,即|
a-(4-a)
2a2
×
2+
(4-a)2
a2
|=
1
2
,…(11分)
解之得:a=
4
5
,或a=4(舍),因此可得PE的长为
4
5
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四面体SABC中,SA⊥底面ABC,△ABC是锐角三角形,H是点A在面SBC上的射影.求证:H不可能是△SBC的垂心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平行六面体ABCD-A1B1C1D1中,若AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°.
(1)求AC1的长;
(2)求异面直线AC1与A1B所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD-A1B1C1D1是四棱柱,AA1⊥底面ABCD,ABCD,AB⊥AD,AD=CD=AA1=1,AB=2.
(1)求证:A1C1⊥平面BCC1B1
(2)求平面A1BD与平面BCC1B1所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AA1=AD=2,点E在棱CD上,且CE=
1
3
CD

(1)求证:AD1⊥平面A1B1D;
(2)在棱AA1上是否存在点P,使DP平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由;
(3)若二面角A-B1E-A1的余弦值为
30
6
,求棱AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形ABCD中,∠BAD=60°,AB=6,AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG.
(I)求证:直线CE直线BF;
(II)若直线GE与平面ABCD所成角为
π
6

①求证:FG⊥平面ABCD:
②求二面B一EF一A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是梯形,ADBC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求异面直线PC与AB所成角的余弦值;
(Ⅲ)在侧棱PA上是否存在一点E,使得平面CDE与平面ADC所成角的余弦值是
2
3
,若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分别以OC,OA,OS为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求
SC
OB
夹角的余弦值;
(Ⅱ)求OC与平面SBC夹角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

R,向量,则(    )
A.B.C.D.10

查看答案和解析>>

同步练习册答案