精英家教网 > 高中数学 > 题目详情
7.“世界睡眠日”定在每年的3月21日.2015年的世界睡眠日主题是“科学管理睡眠”,以提高公众对健康睡眠的自我管理能力和科学认识.为此某网站2015年3月13日到3月20日持续一周的在线调查,共有200人参加调查,现将数据整理分组如题中表格所示.为了对数据进行分析,采用了计算机辅助计算.分析中一部分计算见算法流程图.
序号
(i)
分组
睡眠时间
组中值
(mi
频数
(人数)
频率
(fi
1[4,5)4.580.04
2[5,6)5.5520.26
3[6,7)6.5m0.30
4[7,8)7.5560.28
5[8,9)8.520n
6[9,10]9.540.02
(1)求表格中m与n的值
(2)求输出S的值
(3)S的统计意义是什么?

分析 (1)根据频率的定义即可求出m,n的值,
(2)首先要理解直到型结构图的含义,输入m1,f1的值后,由赋值语句可以知道流程图进入一个求和状态,即根据频率分布直方图求这组数据的平均数.
(3)S的统计意义是参加调查者的平均睡眠时间或参加调查者的睡眠时间的期望值.

解答 解:(1)m=200×0.30=60,n=$\frac{20}{200}$=0.1
(2)首先要理解直到型循环结构图的含义,输入m1,f1的值后,
由赋值语句:S=S+mi•fi可知,流程图进入一个求和状态.
令ai=mi•fi(i=1,2,…,6),数列{ai}的前i项和为Ti
即:T6=4.5×0.04+5.5×0.26+6.5×0.30+7.5×0.28+8.5×0.10+9.5×0.02=6.70,则输出的S为6.70.
(3)S的统计意义是参加调查者的平均睡眠时间或参加调查者的睡眠时间的期望值.

点评 本题看出频率分布直方图和程序框图,本题解题的关键是会读程序框图,看出程序框图运行时所表示意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设函数$f(x)=\left\{{\begin{array}{l}{({k-1}){x^2}-3({k-1})x+\frac{13k-9}{4},x≥2}\\{{{({\frac{1}{2}})}^x}-1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x<2}\end{array}}\right.$,若f(n+1)<f(n)对于一切n∈N+恒成立,则实数k的取值范围为(  )
A.$k<-\frac{1}{5}$B.$\frac{2}{5}≤k<1$C.$k≤-\frac{2}{5}$D.k<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式$\frac{2}{x}$<-3的解集是(  )
A.(-∞,-$\frac{2}{3}$)B.(-$∞,-\frac{2}{3}$)∪(0,+∞)C.(-$\frac{2}{3}$,0)∪(0,+∞)D.(-$\frac{2}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小强从学校放学回家,先跑步后步行,如果y表示小强离学校的距离,x表示从学校出发后的时间,则下列图象中最有可能符合小强走法的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求CB1与平面CAA1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,满足PQ∥平面AC1D1,则PQ与平面BDD1B1所成角的范围是($\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线$\frac{{x}^{2}}{4}$+$\frac{y|y|}{9}$=1和曲线kx+y-3=0有三个交点,则k的取值范围是(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$)∪($\frac{3}{2}$,$\frac{3\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示是函数y=2sin(ωx+φ)(ω>0,|φ|<π)的图象的一部分,求
(1)ω,φ的值.
(2)函数图象的对称轴方程和对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点A,C关于y轴对称,点A,B关于原点对称.
(1)若椭圆的离心率为$\frac{\sqrt{2}}{2}$,且A($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),求椭圆的标准方程;
(2)设D为直线BC与x轴的交点,E为椭圆上一点,且A,D,E三点共线,若直线AB,BE的斜率分别为k1,k2,试问,k1•k2是否为定值?若是,求出该定值;若不是,请加以说明.

查看答案和解析>>

同步练习册答案