精英家教网 > 高中数学 > 题目详情

四棱锥中,侧面⊥底面,底面是边长为的正方形,又分别是的中点.
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

(1)见解析;(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)
已知四棱锥的底面为直角梯形,//底面,且.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;
(2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图1,在三棱锥P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.

(1) 证明:A.D⊥平面PBC;
(2) 求三棱锥D-A.BC的体积;
(3) 在∠A.CB的平分线上确定一点Q,使得PQ∥平面A.BD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.

(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,分别是正四棱柱上、下底面的中
心,的中点,.
(Ⅰ)求证:∥平面
(Ⅱ当取何值时,在平面内的射影恰好为的重心?
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个几何体的三视图如图所示。
(1)求此几何体的表面积;
(2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,正三棱柱中,
的中点,边上的动点.
(Ⅰ)当点的中点时,证明DP//平面
(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正四棱锥底面正方形的边长为4cm,高PO与斜高PE的夹角为,如图,求正四棱锥的表面积与体积

查看答案和解析>>

同步练习册答案