精英家教网 > 高中数学 > 题目详情

【题目】如图,已知中, ,点平面,点在平面的同侧,且在平面上的射影分别为.

(Ⅰ)求证:平面平面

(Ⅱ)若中点,求平面与平面所成锐二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ)

【解析】

(Ⅰ)由在平面上的射影分别为,可以得出平面,进而可以得到,通过计算可以证明出,利用线面垂直的判定定理可以得到线面垂直,利用面面垂直的判定定理可以证明出平面平面

(Ⅱ)以为坐标原点,直线轴建立空间直角坐标系,分别求出平面的法向量和平面的法向量,利用空间向量的数量积坐标表示,可以求出平面与平面所成锐二面角的余弦值.

(Ⅰ)证明:由条件,平面,∴

由计算得,∴

,∴平面,而平面

∴平面平面.

(Ⅱ)以为坐标原点,直线轴建立空间直角坐标系,

,则,平面的法向量为

设平面的法向量,由

设平面与平面所成锐二面角为,则.

所以平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】武汉又称江城,是湖北省省会城市,被誉为中部地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为,游客之间选择意愿相互独立.

1)从游客中随机抽取3人,记总得分为随机变量,求的分布列与数学期望;

2)(i)若从游客中随机抽取人,记总分恰为分的概率为,求数列的前10项和;

)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为分的概率为,探讨之间的关系,并求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)求曲线的极坐标方程和直线l的直角坐标方程;

2)设直线l与曲线交于不同的两点AB,点M为抛物线的焦点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

1

2

3

4

5

6

7

8

112

61

44.5

35

30.5

28

25

24

根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为的相关系数.

参考数据(其中):

183.4

0.34

0.115

1.53

360

22385.5

61.4

0.135

(1)用反比例函数模型求关于的回归方程;

(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;

(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.

参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:,相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为

(1)当时,求函数的单调递减区间.

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

1)若轴,且满足直线与圆相切,求圆的方程;

2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点是,准线是,抛物线上任意一点轴的距离比到准线的距离少2.

1)写出焦点的坐标和准线的方程;

2)已知点,若过点的直线交抛物线于不同的两点(均与不重合),直线分别交于点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,).

(1)判断曲线在点处的切线与曲线的公共点个数;

(2)当时,若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,且,过棱的中点,作于点.

1)证明:平面

2)若面与面所成二面角的大小为,求与面所成角的正弦值.

查看答案和解析>>

同步练习册答案