精英家教网 > 高中数学 > 题目详情

【题目】201810月考考试中,成都外国语学校共有250名高三文科学生参加考试,数学成绩的频率分布直方图如图:

1)如果成绩大于130的为特别优秀,这250名学生中本次考试数学成绩特别优秀的大约多少人?

2)如果这次考试语文特别优秀的有5人,语文和数学两科都特别优秀的共有2人,从(1)中的数学成绩特别优秀的人中随机抽取2人,求选出的2人中恰有1名两科都特别优秀的概率.

3)根据(1),(2)的数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀?

P

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

【答案】1623)有99%以上的把握

【解析】

1)先求出数学成绩特别优秀的概率,即可得出数学特别优秀的同学人数;

2)先将数学成绩特别优秀的有6人,语文数学两科都优秀的有2人,记为AB,只有语文优秀的有4人,记为abcd,,用列举法列举出“选出的2人中恰有1名两科都特别优秀”所包含的基本事件,即可得出结果;

(3)根据题中数据先写出列联表,根据求出,最后结合临界值表,即可得出结果.

解:(1)数学成绩特别优秀的概率为

数学特别优秀的同学有人.

2)数学成绩特别优秀的有6人,语文数学两科都优秀的有2人,记为AB,只有语文优秀的有4人,记为abcd,则基本事件有15种,满足题意的有8种,因此概率

3列联表:

语文特别优秀

语文不特别优秀

合计

数学特别优秀

2

4

6

数学不特别优秀

3

241

244

合计

5

245

250

99%以上的把握认为语文特别优秀的同学,数学也特别优秀.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ADAA11ABm,点M是棱CD的中点.

1)求异面直线B1CAC1所成的角的大小;

2)是否存在实数m,使得直线AC1与平面BMD1垂直?说明理由;

3)设P是线段AC1上的一点(不含端点),满足λ,求λ的值,使得三棱锥B1CD1C1与三棱锥B1CD1P的体积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知拋物线C经过点,其焦点为FM为抛物线上除了原点外的任一点,过M的直线lx轴、y轴分别交于AB两点.

求抛物线C的方程以及焦点坐标;

的面积相等,证明直线l与抛物线C相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)过点M(1,0)的直线与椭圆C相交于AB两点,设点N(3,2),记直线ANBN的斜率分别为k1k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的边长为2分别为的中点,以为折痕把折起,使点到达点的位置,平面平面.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若公差为的无穷等差数列的前项和为,则下列说法:(1)若,则数列有最大项;(2)若数列有最大项,则;(3)若数列是递增数列,则对任意都有;(4)若对任意都有,则数列是递增数列;其中正确的是______.(选序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,判断函数在区间上的单调性;

(Ⅱ)若函数在定义域内有两个零点,求的取值范围.

查看答案和解析>>

同步练习册答案