精英家教网 > 高中数学 > 题目详情
已知圆C1:x2+y2-2x=0与圆C2:x2+y2+4y=0交于点A、B,则直线AB的方程为
 
考点:相交弦所在直线的方程
专题:计算题,直线与圆
分析:要求两圆的公共弦方程,可将两圆方程相减即可得到所求方程.
解答: 解:圆C1:x2+y2-2x=0与圆C2:x2+y2+4y=0交于A,B两点,
则可将两圆方程相减得,x2+y2-2x-(x2+y2+4y)=0,
即2x+4y=0,即有x+2y=0,
即为直线AB的方程.
故答案为:x+2y=0.
点评:本题考查的知识点是圆与圆的位置关系,直线与圆的位置关系,其中将两个圆方程相减,直接得到公共弦AB的方程可以简化解题过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:函数y=(m+2)x-1是R上的单调增函数.若“p或q”是真命题,“p且q”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a+
(-x2-4x)
和g(x)=
4x
3
+1,已知当x∈[-4,0]时,恒有f(x)≤g(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为R的球内接一个正方体,则该正方体的体积是(  )
A、
8
9
3
R3
B、
3
9
R3
C、2
2
R3
D、8R3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点 P为双曲线
x2
16
-
y2
9
=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为△PF1F2的内心,若S△PMF1=S△PMF2+8,则△MF1F2的面积为(  )
A、2
7
B、10
C、8
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=8内有一点P0(-2,1),AB为过点P0且倾斜角为α的弦,
(1)当α=135°时,求直线AB的方程;
(2)若弦AB被点P0平分,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,w>0,|φ|<π)在一个周期内的图象如下图所示.
(1)求函数的解析式;
(2)求函数的单调递增区间;
(3)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(3,
3
),则f(9)=(  )
A、3
B、-3
C、-
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知x,y为正实数,且x+2y=3,则
2x(y+
1
2
)
的最大值是
 

(文)已知x,y为正实数,且x+2y=1,则
1
x
+
1
y
的最小值是
 

查看答案和解析>>

同步练习册答案