精英家教网 > 高中数学 > 题目详情

已知函数.(e是自然对数的底数)
(1)判断上是否是单调函数,并写出在该区间上的最小值;
(2)证明:




,所以最小值为=1
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(x∈R).
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线x=1对称,证明当x>1时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x = 4是函数的一个极值点,(b∈R).
(Ⅰ)求的值;          
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.
(1)求实数a的值;
(2)求函数f(x)的单调区间;
(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求的单调区间;
(II)若对于所有的成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
知二次函数的图象经过点与点,设函数
处取到极值,其中
(1)求的二次项系数的值;
(2)比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于的不等式
时有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logax(a>0且a≠1),如果对于任意的x∈[,2]都有|f(x)|≤1
成立,试求a的取值范围

查看答案和解析>>

同步练习册答案