精英家教网 > 高中数学 > 题目详情
1.下列命题:
①函数$y=sin(2x+\frac{π}{3})$的单调减区间为$[kπ+\frac{π}{12},kπ+\frac{7π}{12}],k∈Z$;
②函数$y=\sqrt{3}cos2x-sin2x$图象的一个对称中心为$(\frac{π}{6},0)$;
③函数y=cosx的图象可由函数$y=sin(x+\frac{π}{4})$的图象向右平移$\frac{π}{4}$个单位得到;
④若方程$sin(2x+\frac{π}{3})-a=0$在区间$[0,\frac{π}{2}]$上有两个不同的实数解x1,x2,则${x_1}+{x_2}=\frac{π}{6}$.
其中正确命题的序号为①②④.

分析 根据正弦函数余弦函数的性质分别分析选择即可.

解答 解:下列命题:
①令2k$π+\frac{π}{2}$≤2x+$\frac{π}{3}$≤$2kπ\\;\\;+\frac{π}{2}\\;\\;\\;\\;\\;\\;\$ $+\frac{3π}{2}$   解得k$π+\frac{π}{12}$≤x≤k$π+\frac{7π}{12}$,k∈Z,
得到函数  $y=sin(2x+\frac{π}{3})$的单调减区间为$[kπ+\frac{π}{12},kπ+\frac{7π}{12}],k∈Z$;故①正确;
②函数$y=\sqrt{3}cos2x-sin2x$=2 cos(2x+$\frac{π}{6}$),令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,得到x=$\frac{kπ}{2}+\frac{π}{6}$,令k=0,得到函数图象 的一个对称中心为$(\frac{π}{6},0)$;故②正确;
③由函数$y=sin(x+\frac{π}{4})$的图象向右平移$\frac{π}{4}$个单位得到y=sinx;故③错误;
④方程 $sin(2x+\frac{π}{3})-a=0$在区间$[0,\frac{π}{2}]$上有两个不同的实数解x1,x2,由三角函数的性质得到${x_1}+{x_2}=\frac{π}{6}$.正确.
故答案为:①②④

点评 本题考查了三角函数的图象和性质的运用;熟练掌握正弦函数和余弦函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex+mx2
(1)若m=1,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)若存在实数m,n,使得f(x)-n≥0(m,n∈R)恒成立,求m-n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C1:x2+y2+4x-4y-3=0,点P为圆C2:x2+y2-4x-12=0上且不在直线C1C2上的任意一点,则△PC1C2的面积的最大值为(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$8\sqrt{5}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xoy中,直线l的参数方程为:$\left\{\begin{array}{l}x=a-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ=sinθ,直线l与曲线C交于M,N两点(点M在点N的上方).
(Ⅰ)若a=0,求M,N两点的极坐标;
(Ⅱ)若P(a,0),且$|PM|+|PN|=8+2\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a=$\int_{-1}^1{\sqrt{1-{x^2}}dx}$,则${[{(a+2-\frac{π}{2})x-\frac{1}{x}}]^6}$展开式中的常数项为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使FG⊥平面PCB,并证明你的结论;
(3)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知θ是第三象限角,满足|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,则$\frac{θ}{2}$是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{2}$)的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知底面半径为r,高为4r的圆柱的侧面积等于半径为R的球的表面积,则$\frac{R}{r}$=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案