【题目】己知函数, .
(I)求函数上零点的个数;
(II)设,若函数在上是增函数.
求实数的取值范围.
【答案】(Ⅰ)零点个数为 (II)的取值范围是
【解析】试题分析:(1)先求得, 时, 恒成立,可证明时, ,可得在上单调递减,根据零点定理可得结果;(2)化简为分段函数,利用导数研究函数的单调性,讨论两种情况,分别分离参数求最值即可求得实数的取值范围.
试题解析:(Ⅰ)函数 ,
求导,得,
当时, 恒成立,
当时, ,
∴ ,
∴在上恒成立,故在上单调递减.
又, ,
曲线在[1,2]上连续不间断,
∴由函数的零点存在性定理及其单调性知,唯一的∈(1,2),使,
所以,函数在上零点的个数为1.
(II)由(Ⅰ)知:当时, >0,当时, <0.
∴当时, =
求导,得
由于函数在上是增函数, 故在, 上恒成立.
①当时, ≥0在上恒成立,
即在上恒成立,
记, ,则,,
所以, 在上单调递减,在上单调递增,
∴min= 极小值= ,
故“在上恒成立”,只需 ,即.
②当时, ,
当时, 在上恒成立,
综合①②知,当时,函数在上是增函数.
故实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知A、B是抛物线W: 上的两个动点,F是抛物线W的焦点, 是坐标原点,且恒有.
(1)若直线OA的倾斜角为时,求线段AB的中点C的坐标;
(2)求证直线AB经过一定点,并求出此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校设计了一个实验考察方案:考生从6道备选题中随机抽取3道题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中的2道题便可通过.己知6道备选题中考生甲有4道能正确完成,2道题不能完成;考生乙每题正确完成的概率都是 ,且每题正确完成与否互不影响.
(I) 求甲考生通过的概率;
(II) 求甲、乙两考生正确完成题数的概率分布列,和甲、乙两考生的数学期望;
(Ⅲ)请分析比较甲、乙两考生的实验操作能力.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.如果命题“¬p”与命题“p∨q”都是真命题,那么命题q一定是真命题
B.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
C.若命题p:?x0∈R,x02+2x0﹣3<0,则?p:?x∈R,x2+2x﹣3≥0
D.“sinθ= ”是“θ=30°”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数f(x)与第x天近似地满足 (千人),且参观民俗文化村的游客人均消费g(x)近似地满足g(x)=143﹣|x﹣22|(元).
(1)求该村的第x天的旅游收入p(x)(单位千元,1≤x≤30,x∈N*)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com