精英家教网 > 高中数学 > 题目详情
设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为(  )
分析:利用双曲线的定义和已知即可得出|PF1|,|PF2|,进而确定最小内角,再利用余弦定理和离心率计算公式即可得出.
解答:解:不妨设|PF1|>|PF2|,则|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.
则∠PF1F2是△PF1F2的最小内角为30°,∴|PF2|2=|PF1|2+|F1F2|2-2|PF1|•|F1F2|cos30°
∴(2a)2=(4a)2+(2c)2-2×4a×2c×
3
2

化为e2-2
3
e+3
=0,解得e=
3

故选C.
点评:熟练掌握双曲线的定义、离心率计算公式、余弦定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,点P在双曲线上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),则双曲线的离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线x2-
y224
=1
的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点),且tan∠PF2F1=2,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案