精英家教网 > 高中数学 > 题目详情
15.数列{an}满足${a_1}=\frac{1}{5},{a_n}+{a_{n+1}}=\frac{6}{{{5^{n+1}}}}(n∈{N^*})$,则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{1}{4}$.

分析 可以判断出数列{an+an+1}是以$\frac{6}{{5}^{2}}$为首先,$\frac{1}{5}$为公比的等比数列,从而可以由等比数列的前n项和公式求该数列的前n项和,从而可以得到$\underset{lim}{n→∞}[({a}_{1}+{a}_{2}+…+{a}_{n}){{+(a}_{1}+a}_{2}+…+{a}_{n+1})-{a}_{1}]$=$\underset{lim}{n→∞}\frac{\frac{6}{{5}^{2}}(1-\frac{1}{{5}^{n}})}{1-\frac{1}{5}}$,而$\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n})$=$\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n+1})$,这样便可求出$\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n})$.

解答 解:根据条件,${a}_{1}+{a}_{2}=\frac{6}{{5}^{2}}$;
∴${a}_{n}+{a}_{n+1}=\frac{6}{{5}^{2}}•(\frac{1}{5})^{n-1}$;
∴数列{an+an+1}是以$\frac{6}{{5}^{2}}$为首先,$\frac{1}{5}$为公比的等比数列;
∴$\underset{lim}{n→∞}[({a}_{1}+{a}_{2})+({a}_{2}+{a}_{3})+…+({a}_{n}+{a}_{n+1})]$=$\underset{lim}{n→∞}[{a}_{1}+2({a}_{2}+{a}_{3}+…+{a}_{n})+{a}_{n+1}]$
=$\underset{lim}{n→∞}[({a}_{1}+{a}_{2}+…+{a}_{n})+({{a}_{1}+{a}_{2}+…+a}_{n+1})-{a}_{1}]$
=$2\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n})-\frac{1}{5}$
=$\underset{lim}{n→∞}\frac{\frac{6}{{5}^{2}}(1-\frac{1}{{5}^{n}})}{1-\frac{1}{5}}=\frac{3}{10}$;
∴$\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n})=\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 考查等比数列的通项公式,等比数列的前n项和公式,以及数列极限的概念及其计算,清楚$\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n})=\underset{lim}{n→∞}({a}_{1}+{a}_{2}+…+{a}_{n+1})$是本题求解的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga$\frac{x-2}{x+2}(a>0$且a≠1).
(1)求f(x)的定义域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{a+b-c}{a+b}$.
(1)求角A的大小;
(2)若B=$\frac{π}{2}$,AB=4$\sqrt{3}$,点D是斜边AC上的一个动点,连接BD,以BD为折痕,将△BDA翻折,使点A落在平面BCD内点A1处,连接A1C,如图,求A1C的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a1=-16,3an=3an-1+2(n∈N*),若anan+2<0,则n=24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,已知${a_1}=1,{S_n}=n{a_n}-2n(n-1)(n∈{N^*})$.
(1)求证:数列{an}为等差数列,并求出其通项公式;
(2)若${S_1}+\frac{S_2}{2}+\frac{S_3}{3}+…+\frac{S_m}{m}=400$,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1的一个焦点坐标为(1,0),则实数m的值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若方程lnx+2x-6=0在(n,n+1),n∈Z内有一解,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数$f(x)=Asin(ωx-\frac{π}{6})+B(A>0,ω>0)$的最大值为3,最小值为-1,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,则$f(\frac{π}{3})$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知ABCD和ABEF是两个全等的矩形,M、N分别为AC、FB上的点,且AM=FN,过点M作MP∥CB,交AB于P,求证:平面MNP∥平面CEB.

查看答案和解析>>

同步练习册答案