已知函数的图象过坐标原点,
且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ) 对任意给定的正实数,曲线上是否存在两点P、Q,使得是以为
直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由。
解:(Ⅰ)当时,,则。
依题意得:,即
解得 ……2分
(Ⅱ)由(Ⅰ)知,
①当时,,
令得
当变化时,的变化情况如下表:
0 | |||||
— | 0 | + | 0 | — | |
单调递减 | 极小值 | 单调递增 | 极大值 | 单调递减 |
又,,。∴在上的最大值为2. …4分
② 当时, .若时, ,最大值为0;
若时, 在上单调递增。∴在最大值为。 …6分
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。 …7分
(Ⅲ) 假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*) …………9分
若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,
∴的取值范围是。 …………………….11分
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为
直角顶点的直角三角形,且此三角形斜边中点在轴上。…………………….12分
科目:高中数学 来源:2012-2013学年江西省宜春中学、新余一中高三(上)12月联考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三5月高考冲刺理科数学试卷(解析版) 题型:解答题
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三12月月考文科数学 题型:解答题
(本小题满分14分)
已知函数的图象过坐标原点O, 且在点处的切线的斜率是.(1)求实数的值; (2)求在区间上的最大值
查看答案和解析>>
科目:高中数学 来源:2011-2012学年安徽省高三上学期第二次月考理科数学试卷 题型:解答题
已知函数的图象过坐标原点O,且在点 处的切线的斜率是5.
(1)求实数的值;
(2)求在区间上的最大值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com