(Ⅰ)证明:因为F,G分别为PB,BE的中点,所以FG∥PE.
又FG?平面PED,PE?平面PED,所以FG∥平面PED.
(Ⅱ)解:因为EA⊥平面ABCD,所以PD⊥平面ABCD,所以PD⊥AD,PD⊥CD.
又因为四边形ABCD是正方形,所以AD⊥CD.
如图建立空间直角坐标系,
因为AD=PD=2EA,所以D(0,0,0),P(0,0,2),A(2,0,0),
C(0,2,0),B(2,2,0),E(2,0,1).
因为F,G,H分别为PB,EB,PC的中点,所以F(1,1,1),G(2,1,
),H(0,1,1).
所以
,
,
设
为平面FGH的一个法向量,则
,即
,
再令y
1=1,得
.
,
设
为平面PBC的一个法向量,则
,即
,
令z
2=1,得
.
所以
=
.
所以平面FGH与平面PBC所成锐二面角的大小为
.
(Ⅲ)在线段PC上存在点M,使直线FM与直线PC所成角为60°
证明:假设在线段PC上存在点M,使直线FM与直线PC所成角为60°.
依题意可设
,其中0≤λ≤1.
由
,则
.
又因为
,
所以
.
又直线FM与直线PA成60°角,
,
所以
,即
,解得:
.
所以
,
.
所以,在线段PC上存在点M,使直线FM与直线PC所成角为60°,此时PM的长为
.
分析:(Ⅰ)由三角形的中位线定理得到线线平行,然后直接利用线面平行的判定定理得到线面平行;
(Ⅱ)建立空间直角坐标系,根据两个平面的法向量所成的角与二面角相等或互补,由两个平面法向量所成的角求解二面角的大小;
(Ⅲ)假设存在点M,由共线向量基本定理得到M点的坐标,其中含有一个未知量,然后利用直线FM与直线PA所成的角为
60°转化为两向量所成的角为60°,由两向量的夹角公式求出M点的坐标,得到的M点的坐标符合题意,说明假设成立,最后得到结论.
点评:本题考查了线面平行的判定,考查了线线角和面面角,训练了利用平面法向量求解二面角的大小,解答此类问题的关键是正确建系,准确求用到的点的坐标,此题是中档题.