精英家教网 > 高中数学 > 题目详情

【题目】已知函数,下列命题正确的有_______.(写出所有正确命题的编号)

是奇函数;

上是单调递增函数;

③方程有且仅有1个实数根;

④如果对任意,都有,那么的最大值为2.

【答案】①②④

【解析】分析:用奇函数的定义判断是否为奇函数,由导数证明函数的单调性,由零点存在定理及零点的定义确定零点的个数是否为1,利用导数求出函数的最值确定参数的范围.

详解:,∴是奇函数,①正确;

,∴上的增函数,②正确

,易知,0的一个零点,,而,即上也存在零点,

的零点多至少有2个,③错;

,则易知,当时,单调递增,又,∴时,恒成立

时,,因此存在,使,从而上单调递减,上不恒成立,综上 ,即的最大值为2,④正确.

故答案为①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示:

(I)求的解析式及对称中心坐标;

(Ⅱ)将的图象向右平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数的图象,求函数上的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则不能获得奖金.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
(Ⅲ)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

-2

4

-2

4

1)根据表格提供的数据求函数的解析式;

2)求函数的单调递增区间和对称中心;

3)若当时,方程 恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于之间,将测量结果按如下方式分组:第一组,第二组,…,第八组,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.

(1)请补全频率分布直方图并求第七组的频率;

(2)估计该校的800名男生的身高的中位数以及身高在以上(含)的人数;

(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线(b>0)的左、右焦点分别为,其一条渐近线方程为y=x,点P在该双曲线上,且,则=( )

A. 4 B. 4 C. 8 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,PA⊥平面ABCDCDADBCAD.

(Ⅰ)求证:CDPD

(Ⅱ)求证:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从道题中(道甲组题和道乙组题)不放回地依次任取道作答.

(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;

(2)规定理科考生需作答道甲组题和道乙组题,该考生答对甲组题的概率均为,答对乙组题的概率均为,若每题答对得,否则得零分.现该生已抽到道题(道甲组题和道乙组题),求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

同步练习册答案