精英家教网 > 高中数学 > 题目详情

分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(1)求方程有实根的概率;
(2)求的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.

(1)(2)的分布列为


0
1
2
P



的数学期望
(3).

解析试题分析:(1)基本事件总数为
若使方程有实根,则,即
时,;。当时,;当时,
时,;当时,;当时,,
目标事件个数为因此方程 有实根的概率为
(2)由题意知,,则
的分布列为


0
1
2
P



的数学期望
(3)记“先后两次出现的点数中有5”为事件M,“方程 有实根” 为事件N,则.
考点:本题考查了随机变量的分布列与期望
点评:概率统计题主要考查基本概念和基本公式,对互斥事件(对立事件)的概率、独立事件的概率、事件在n次独立重复试验中恰好发生K次的概率,离散型随机变量分布列和数学期望、方差等内容都进行了考查。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中 间的矩形的高;
(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:

测试指标





元件A





元件B





(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我区高三期末统一测试中某校的数学成绩分组统计如下表:

分组
频数
频率















合计


(1)求出表中的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;

(2)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在分以上的人数;
(3)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分
的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

表1:(甲流水线样本频数分布表)  图1:(乙流水线样本频率分布直方图) 
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.

 
甲流水线
 乙流水线
 合计
合格品


 
不合格品


 
合 计
 
 

附:下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋子中装有若干个均匀的红球和白球,从中摸出一个红球的概率是,从中摸出一个红球的概率为
(1)从中有放回地摸球,每次摸出一个,共摸4次.
①恰好有2次摸到红球的概率;②第一次、第三次摸到红球的概率.
(2)若两个袋子中的球数之比为4,将中的球装在一起后,从中摸出一个红球的概率是,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

工商部门对甲、乙两家食品加工企业的产品进行深入检查后,决定对甲企业的5种产品和乙企业的3种产品做进一步的检验.检验员从以上8种产品中每次抽取一种逐一不重复地进行化验检验.
(1)求前3次检验的产品中至少1种是乙企业的产品的概率;
(2)记检验到第一种甲企业的产品时所检验的产品种数共为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.
(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.

查看答案和解析>>

同步练习册答案