精英家教网 > 高中数学 > 题目详情
13.下列命题中的假命题是(  )
A.?x∈R,ex>0B.?x∈N,x2>0
C.?x0∈R,lnx0<0D.$?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$

分析 根据指数函数的图象和性质,可判断A;
举出反倒x=0,可判断B;
举出正例x0=$\frac{1}{e}$,可判断C;
举出正例x0=1,可判断D;

解答 解:由指数函数的值域为(0,+∞)得A:?x∈R,ex>0为真命题;
当x=0时,x2=0,故B:?x∈N,x2>0为假命题;
?x0=$\frac{1}{e}$∈R,lnx0=-1<0,故C为真命题;
$?{x}_{0}=1∈{N}^{*},sin\frac{π}{2}{x}_{0}=1$,故D为真命题;
故选:B.

点评 本题以命题的真假判断与应用为载体,考查了全称命题,特称命题,函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知tanα=3,那么cos2α的值是(  )
A.$-\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)=x3-6ax的单调递减区间是(-2,2),则a的取值范围是(  )
A.(-∞,0]B.[-2,2]C.{2}D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设0<α<$\frac{π}{2}$<β<π,sinα=$\frac{3}{5},sin(α+β)=\frac{3}{5}$,则sinβ的值为$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数f(x)=m-$\frac{2}{{5}^{x}+1}$.
(1)判断函数f(x)的单调性递增;
(2)若f(x)是奇函数,求m的值1;
(3)若f(x)的值域为D,且D⊆[-3,1],求m的取值范围[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sinx=$-\frac{4}{5}$,则sin(x+π)等于(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足x2+y2+4x-2y+4=0,则$\frac{y}{x}$的取值范围是(  )
A.$({-∞,-\frac{4}{3}}]∪[{0,+∞})$B.$({-∞,-\frac{3}{4}}]∪[{0,+∞})$C.$[{-\frac{3}{4},0}]$D.$[{-\frac{4}{3},0}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=sin(2x+$\frac{π}{3}$ )的一条对称轴为(  )
A.x=$\frac{π}{2}$B.x=0C.x=-$\frac{π}{6}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的中心为原点,左焦点为焦点的抛物线的标准方程是(  )
A.x2=8yB.y2=16xC.x2=-8yD.y2=-16x

查看答案和解析>>

同步练习册答案