【题目】已知函数.
(1)当时,求曲线与曲线的公切线的方程;
(2)设函数的两个极值点为,求证:关于的方程有唯一解.
【答案】(1)(2)见解析
【解析】
(1)求两条曲线的公切线,分别求出各自的切线,然后两条切线为同一条直线,结合两个方程求解;
(2)要证明关于的方程有唯一解,只要证明即可,由于当时,单调递增,不可能有两个零点,故不可能有两个极值点,故,利用得,又,接下来只要证明,即,令,则只要证明即可,用导数即可证明.
(1)曲线在切点处的切线方程为
,即,
曲线在切点处的切线方程为
,即,
由曲线与曲线存在公切线,
得,得,即.
令,则,
,解得,∴在上单调递增,
,解得,∴在上单调递减,
又,∴,则,
故公切线方程为.
(2)要证明关于的方程有唯一解,
只要证明,
先证明:.
∵有两个极值点,
∴有两个不同的零点,
令,则,
当时,恒成立,∴单调递增,不可能有两个零点;
当时,,则,∴在上单调递增,
,则,∴在上单调递减,
又时,,时,,
∴,得,∴.
易知,
由,得,,
∴.
下面再证明:.
,
令,则只需证,
令,
则,
∴,得.
∴有唯一解.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)函数,讨论的单调性;
(2)曲线在点处的切线为,是否存在这样的点使得直线与曲线也相切,若存在,判断满足条件的点的个数,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,点.设点的轨迹为,下列结论正确的是( )
A. 的方程为
B. 在轴上存在异于的两定点,使得
C. 当三点不共线时,射线是的平分线
D. 在上存在点,使得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种新的验血技术可以提高血液检测效率.现某专业检测机构提取了份血液样本,其中只有1份呈阳性,并设计了如下混合检测方案:先随机对其中份血液样本分别取样,然后再混合在一起进行检测,若检测结果为阴性,则对另外3份血液逐一检测,直到确定呈阳性的血液为止;若检测结果呈阳性,测对这份血液再逐一检测,直到确定呈阳性的血液为止.
(1)若,求恰好经过3次检测而确定呈阳性的血液的事件概率;
(2)若,宜采用以上方案检测而确定呈阳性的血液所需次数为,
①求的概率分布;
②求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.
(Ⅰ)证明:平面 平面;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定“口径误差”的计算方式为:管件内外两个口径实际长分别为,标准长分别为则“口径误差”为只要“口径误差”不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.
(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;
(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,圆:,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.
(Ⅰ)求曲线的方程;
(Ⅱ)不垂直于轴且不过点的直线与曲线相交于两点,若直线、的斜率之和为0,则动直线是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com