精英家教网 > 高中数学 > 题目详情
已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=______(用数字作答).
在数列{bn}中,到an项共有=n+(1+2+…+2n-2)=n+
1×(2n-1-1)
2-1
=2n-1+n-1项,即为f(n)(n≥2).
则f(11)=210+11-1=1034,f(12)=211+12-1=2059.
设等比数{an}的公比为q,由a1=1,a4=8,得1×q3=8,解得q=2,
因此S2013=a1+a2+…+a10+a11+1+2+3+…+2002=
1×(211-1)
2-1
+
2002×(1+2002)
2
=2007050.
故答案为2007050.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=
2007050
2007050
(用数字作答).

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南京市高淳县湖滨高级中学高二(上)9月月考数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市高一(下)期末数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高一(下)期末数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

同步练习册答案