精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2+2ax+3,x∈[-4,6]
(1)当a=-2时,求f(x)的最大值和最小值;
(2)若f(x)是单调函数,求a的取值范围.

分析 (1)求出对称轴,可得最小值,计算端点处函数值,可得最大值;
(2)求出对称轴,即有-a≥6或-a≤-4,解不等式即可得到所求范围.

解答 解:(1)函数f(x)=x2-4x+3,x∈[-4,6],
对称轴为x=2∈[-4,6],
则f(x)的最小值为f(2)=-1;
f(x)的最大值为f(-4)=35;
(2)若f(x)是单调函数,
且对称轴为x=-a,
则-a≥6或-a≤-4,
解得a≥4或a≤-6.

点评 本题考查二次函数的最值的求法,以及单调区间的求法,注意运用分类讨论思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.一个容量为20的样本数椐,分组后,组距与频数如下:第1组:(10,20],2个;第2组:(20,30],3个;第3组:(30,40],4个;第4组:(40,50],5个;第5组:(50,60],4个;第6组:(60,70],2个.则样本在区间[50,+∞)上的频率为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)设函数$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$,求证:函数f(x)在(-∞,+∞)上是增函数;
(2)若f(x)=(log4x-3)•log44x>m在区间[1,2]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}+\overrightarrow{b}$|=2,则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+x2f'(1).
(1)求f'(1)和函数x的极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围;
(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,半径为b的圆与直线y=x+$\sqrt{6}$相切.
(1)求椭圆C的标准方程;
(2)已知椭圆C的上顶点为B,过点B且互相垂直的动直线l1,l2与椭圆的另一个交点分别为P,Q,设直线PQ与y轴相交于点M,若$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合M={0,1,2}的真子集个数是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥S-ABCD的底面是边长为1的菱形,其中∠DAB=60°,SD垂直于底
面ABCD,$SB=\sqrt{3}$;
(1)求四棱锥S-ABCD的体积;
(2)设棱SA的中点为M,求异面直线DM与SB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,点E在PD上,且$\frac{PE}{ED}$=2.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)在棱PC上是否存在点F使得BF∥平面EAC?若存在,指出F的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案