精英家教网 > 高中数学 > 题目详情

C:x2+y2+2x-2y-2=0的圆心到直线3x+4y+14=0的距离是    .

 

3

【解析】因为圆心坐标为(-1,1),所以圆心到直线3x+4y+14=0的距离为=3.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十第八章第一节练习卷(解析版) 题型:填空题

经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:填空题

设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,P是椭圆上的动点,则使得△PAB的面积为的点P的个数为   .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:选择题

已知双曲线-=1(a>0,b>0)的一条渐近线方程为y=x,则双曲线的离心率为(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:解答题

如图,

在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线ACBD互相垂直,ACBD分别在x轴和y轴上.

(1)求证:F<0.

(2)若四边形ABCD的面积为8,对角线AC的长为2,·=0,D2+E2-4F的值.

(3)设四边形ABCD的一条边CD的中点为G,OHAB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题

在同一坐标系下,直线ax+by=ab和圆(x-a)2+(y-b)2=r2(ab0,r>0)的图象可能是(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:解答题

给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.

(1)求椭圆C的方程和其“准圆”的方程.

(2)P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,l1,l2分别交其“准圆”于点M,N.

①当P为“准圆”与y轴正半轴的交点时,l1,l2的方程;

②求证:|MN|为定值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十三第八章第四节练习卷(解析版) 题型:填空题

与直线l:x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十第三章第四节练习卷(解析版) 题型:解答题

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=,f(x)的最大值为2.

(1)f(x)的解析式.

(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案