精英家教网 > 高中数学 > 题目详情
设不同直线m,n和不同平面α,β,给出下列四个命题:

m∥β;②n∥β;③m,n异面;④m⊥β.

其中假命题有(    )

A.0个                   B.1个              C.2个              D.3个

答案:B

解析:①正确;②错误,因为n可能在β内;③错误,因为m,n可能平行;④错误,因为m可能平行于β.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是(  )

m⊥n
n?α
?m⊥α
;②
a⊥α
a?β
?α⊥β

m⊥α
n⊥α
?m∥n
;④
m?α
n?β
α∥β
?m∥n
A、①和②B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的标准方程;
(2)设直线l与椭圆C1交于不同两点M、N,且
OM
ON
=0
,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α、β、γ是三个不重合的平面,m、n为两条不同的直线.给出下列命题:
①若n∥m,m?α,则n∥α;
②若α∥β,n?β,n∥α,则n∥β;
③若β⊥α,γ⊥α,则β∥γ;
④若n∥m,n⊥α,m⊥β,则α∥β.其中真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求曲线C1,C2的标准方程;
(Ⅱ)设直线l与椭圆C1交于不同两点M、N,且
OM
ON
=0,请问是否存在直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案