精英家教网 > 高中数学 > 题目详情
19.已知过点F(0,1),且斜率为k的直线l与抛物线E:x2=4y相交于A,B两点,与圆F:x2+(y-1)2=1相交于C,D两点,其中,点A,C在第一象限.
(1)求|AC|×|BD|的值;
(2)过点C作圆F的切线l,当$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$时,求直线l1在y轴上的截距的取值范围.

分析 (1)由已知可知,直线l方程为y=kx+1,代入抛物线方程消去y,结合抛物线的定义,即可得出结论.
(2)求出过点C作圆F的切线l的方程,令x=0可得y,利用$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$时,求直线l1在y轴上的截距的取值范围.

解答 解:(1)设A(x1,y1)、B(x2,y2),
由已知可知,直线l方程为y=kx+1,代入抛物线方程消去y,得x2-4kx-4=0,
∴x1+x2=4k,x1x2=-4,
∴y1y2=kx1x2+(x1+x2)+1=1
则|AC|×|BD|=(y1+1-1)(y2+1-1)=y1y2=1;
(2)y=kx+1代入圆F:x2+(y-1)2=1可得C($\sqrt{\frac{1}{1+{k}^{2}}}$,k$\sqrt{\frac{1}{1+{k}^{2}}}$+1),
∴过点C作圆F的切线l的方程为y-k$\sqrt{\frac{1}{1+{k}^{2}}}$-1=-$\frac{1}{k}$(x-$\sqrt{\frac{1}{1+{k}^{2}}}$),
令x=0,可得y=(k+$\frac{1}{k}$)$\sqrt{\frac{1}{1+{k}^{2}}}$+1=$\sqrt{\frac{1}{{k}^{2}}+1}$+1,
∵$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$,
∴3≤$\frac{1}{{k}^{2}}$≤8
∴3≤y≤4.

点评 抛物线的定义,可以将抛物线上的点到焦点的距离转化为到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.已知直角三角形具有性质:“斜边的中线长等于斜边边长的一半”.仿照此性质写出直角三棱锥具有的性质(  )
A.直角三棱锥中,每个斜面的中面面积等于斜面面积的三分之一
B.直角三棱锥中,每个斜面的中面面积等于斜面面积的四分之一
C.直角三棱锥中,每个斜面的中面面积等于斜面面积的二分之一
D.直角三棱锥中,每个斜面的中面面积与斜面面积的关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知一次函数y=f(x)的图象经过y=2ax-1+1和y=ln(3-x)+1的图象的定点,则f(x)=-2x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是奇函数,函数g(x)=f(x-2)+3,那么g(x)的图象的对称中心的坐标是(  )
A.(-2,1)B.( 2,1)C.(-2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2-2x+4y=0与y-2tx+2t+1=0(t∈R)的位置关系为(  )
A.相离B.相切C.相交D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2log${\;}_{\frac{1}{2}}$x的定义域为[2,4],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列四个选项中错误的是(  )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0则x=1”.
B.若p∧q为真命题,则p∨q为真命题.
C.若命题p:?x∈R,x2+x+1≠0,则¬p:?x∈R,x2+x+1=0.
D.“x>2”是“x2-3x+2>0”成立的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题P:A={x|x2-5x+4≤0};命题q:B={x|(x+1)(x-a)<0}
(1)求出A的解集
(2)若p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

同步练习册答案