精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)的定义域为R,且为可导函数,若对?x∈R,总有2f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),则(  )
A.f(x)>0恒成立B.f(x)<0恒成立
C.f(x)的最大值为0D.f(x)与0的大小关系不确定

分析 令g(x)=x2f(x),求出函数的导数,得到函数g(x)的单调区间,从而求出函数的最大值,求出答案即可.

解答 解:令g(x)=x2f(x),
则g′(x)=x[2f(x)+xf′(x)],
若对?x∈R,总有2f(x)+xf′(x)<0成立
则x>0时,g′(x)<0,x<0时,g′(x)>0,
故g(x)在(-∞,0)递增,在(0,+∞)递减,
故g(x)max=g(0)=0,
故选:C.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,设出g(x)是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.
(1)求EF与DG所成角的余弦值;
(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{2,x<0}\end{array}\right.$,则f[f(-3)]=(  )
A.4B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过点P(1,0)的直线l交圆O:x2+y2=1于A,B两点,$|AB|=\sqrt{2}$,则直线l的方程为x-y-1=0或x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若某市6所中学参加中学生合唱比赛的得分用茎叶图表示如图,其中茎为十位数,叶为个位数,则这组数据的方差是$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直三棱柱A1B1C1-ABC,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,则BD1与AF1所成角的余弦值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{15}$D.$\frac{{\sqrt{15}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦点到渐近线的距离为(  )
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,BC=2,则三棱锥P-ABC的外接球的表面积的最小值为(  )
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四边形ABCD是边长为2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求证:AC∥平面DEF;
(Ⅲ)求三棱锥C-DEF的体积.

查看答案和解析>>

同步练习册答案