精英家教网 > 高中数学 > 题目详情
19.函数y=$\frac{{\sqrt{8-2x}}}{{{{log}_2}(3x+1)}}$的定义域是{x|-$\frac{1}{3}$<x≤4,且x≠0}.

分析 根据二次根式和对数的真数的条件即可求出定义域.

解答 解:要使函数y=$\frac{{\sqrt{8-2x}}}{{{{log}_2}(3x+1)}}$有意义,
则$\left\{\begin{array}{l}{8-2x≥0}\\{3x+1>0,且3x+1≠1}\end{array}\right.$,
解得-$\frac{1}{3}$<x≤4,且x≠0,
∴函数y=$\frac{{\sqrt{8-2x}}}{{{{log}_2}(3x+1)}}$的定义域是{x|-$\frac{1}{3}$<x≤4,且x≠0},
故答案为:{x|-$\frac{1}{3}$<x≤4,且x≠0}.

点评 本题考查了函数定义域的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+ax-1nx(a∈R,a为常数).
(1)过坐标原点O作曲线y=f(x)的切线,设切点为P(x0,y0),求x0的值;
(2)当a=-1时,若方程f(x)=$\frac{b}{x}$有实根,求b的最小值;
(3)设 F(x)=f(x)e-x,若F(x)在区间(0,1]上是单调函数,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用数字0,3,5,7,9可以组成96个没有重复数字的五位数(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,BC=a,AB=c,且$\frac{tanA}{tanB}$=$\frac{\sqrt{2}c-b}{b}$.求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={-1,0,1},B={x|x2-x+1},若A∪B=A,则x=0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=f(x)的图象是自原点出发的一条折线,当n≤y≤n+1(n=0,1,2…)时,该图象是斜率为bn的线段(其中正常数b≠1),设数列{xn},由f(xn)=n(n=1,2…)定义,
(文科)则x1+x2=$2+\frac{1}{b}$
(理科)则xn的通项公式为${x}_{n}=\frac{b-\frac{1}{{b}^{n-1}}}{b-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:a1+$\frac{{a}_{2}}{λ}$+$\frac{{a}_{3}}{{λ}^{2}}$+…+$\frac{{a}_{n}}{{λ}^{n-1}}$=n2+2n(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,若bn=$\frac{{{a_n}-(2n+1)•{r^n}}}{{(n+\frac{1}{2})(1+{r^n})}}$(r∈R,r≠-1),求$\lim_{n→∞}{b_n}$
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,是否存在λ≠1,使得不等式(1-λ)Sn+(2n+1)•λn≤3成立,若存在,求实数λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项a1=1,a2=3,前n项和为Sn,且Sn+1,Sn,Sn-1(n>1)分布是直线l上的点A,B,C的横坐标,$\overrightarrow{AB}=\frac{{2{a_n}+1}}{a_n}\overrightarrow{BC}$,设b1=1,bn+1=log2(an+1)+bn
(1)判断数列{an+1}是否为等比数列,并证明你的结论;
(2)设${C_n}=\frac{{{4^{\frac{{{b_{n+1}}-1}}{n+1}}}}}{{{a_n}{a_{n+1}}}}$,证明:C1+C2+C3+…+Cn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${({\root{3}{{\root{6}{a^9}}}})^4}{({\root{6}{{\root{3}{a^9}}}})^4}$=a4

查看答案和解析>>

同步练习册答案