精英家教网 > 高中数学 > 题目详情
11.定长为l($l>\frac{{2{b^2}}}{a}$)的线段AB的两个端点都在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右支上,则AB中点M的横坐标的最小值为(  )
A.$\frac{a(2a+l)}{{2\sqrt{{a^2}+{b^2}}}}$B.$\frac{a+l}{{2\sqrt{{a^2}+{b^2}}}}$C.$\frac{a(l-2a)}{{2\sqrt{{a^2}+{b^2}}}}$D.$\frac{al}{{2\sqrt{{a^2}+{b^2}}}}$

分析 用A、B 两点的坐标表示出|FA|和|FB|,解出A、B 两点的坐标,利用|FA|+|FB|≥|AB|,求得m的最小值.

解答 解:设AB中点M的横坐标为m,右焦点为F,离心率为e,AB的中点横坐标为m,
则m=$\frac{1}{2}$(xA+xB),
|FA|=e(xA-$\frac{{a}^{2}}{c}$),|FB|=e(xB-$\frac{{a}^{2}}{c}$),
∴m=$\frac{1}{2}$•$\frac{1}{e}$(|FA|+|FB|)+$\frac{{a}^{2}}{c}$≥$\frac{1}{2e}$|AB|+$\frac{{a}^{2}}{c}$=$\frac{1}{2e}$+$\frac{{a}^{2}}{c}$=$\frac{la}{2c}$+$\frac{{a}^{2}}{c}$
=$\frac{a(2a+l)}{2\sqrt{{a}^{2}+{b}^{2}}}$,
当且仅当F、A、B共线时,m取得最小值.
故选:A.

点评 本题考查双曲线的定义和双曲线的标准方程、以及双曲线的简单性质的应用,注意运用双曲线的第二定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数g(x)=x(x2-1),则g(x)在区间[0,1]上的最大值为(  )
A.-1B.0C.-$\frac{2\sqrt{3}}{9}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.5名学生站成一排照相,甲、乙之间必须间隔一人的排法共(  )
A.12种B.18种C.24种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点坐标为(2$\sqrt{3}$,0)则实数a的值为(  )
A.8B.2$\sqrt{2}$C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)求平行于直线x-2y+1=0,且与它的距离为2$\sqrt{5}$的直线方程;
(Ⅱ)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{x>0}\\{y≤2}\end{array}\right.$,则$\frac{2y}{2x+1}$的取值范围是(  )
A.[$\frac{4}{3}$,4]B.[$\frac{4}{3}$,4)C.[2,4]D.(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校开展“读好书,好读书”活动,要求本学期每人至少读一本课外书,该校高一共有100名学生,他们本学期读课外书的本数统计如图所示.
( I)求高一学生读课外书的人均本数;
(Ⅱ)从高一学生中任意选两名学生,求他们读课外书的本数恰好相等的概率;
(Ⅲ)从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,求随机变量ζ的分布列及数学期望Eζ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为(  )
A.$4\sqrt{3}$B.$4\sqrt{2}$C.6D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥k}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=2x+y的最小值为8,则y-x的取值范围为[-1,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案