精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
,过焦点F1的弦AB,(A,B两点在同一支上)且长为m,另一焦点为F2,则△ABF2的周长为(  )
分析:因为双曲线左支上的点到右焦点的距离与到左焦点的距离的差等于实轴长2a,可以求出|AF2|+|BF2|-(|AF1|+|BF1|)=4a,再因为|AF1|+|BF1|=|AB|=m,就可求出△ABF2的周长.
解答:解:根据双曲线的定义,可得,|AF2|-|AF1|=2a,①|BF2|-|BF1|=2a②
①+②,得,|AF2|+|BF2|-(|AF1|+|BF1|)=4a
∵|AF1|+|BF1|=|AB|=m,
∴|AF2|+|BF2|=4a+m
△ABF2的周长为|AF1|+|BF1|+|AB|=4a+m+m=4a+2m
故选C
点评:本题主要考查应用双曲线的定义求焦点三角形周长,属于双曲线的常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案