精英家教网 > 高中数学 > 题目详情
已知等比数列{an}满足an>0,n=1,2,…,且a3a2n-3=32n(n≥2),则当n≥1时,log3a1+log3a3+…log3a2n-1=
n2
n2
分析:由给出的数列是等比数列,结合a3a2n-3=32n(n≥2),利用等比中项的概念求出an,利用对数式的运算性质化简要求值的式子,把an代入后在运用等差数列的求和化简即可得到答案.
解答:解:在等比数列{an}中,由a3a2n-3=32n(n≥2)
得:an2=a3a2n-3=32n
因为an>0,所以an=3n
则log3a1+log3a3+…log3a2n-1
=log3(a1a3…a2n-1
=log331+3+…+(2n-1)
=log33
(1+2n-1)n
2
=log33n2=n2
故答案为n2
点评:本题考查了等比数列的通项公式,考查了对数式的运算性质,利用等比中项的概念求出an是解答该题的关键,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案