精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,右顶点是,离心率为.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点(不同于点),若,求证:直线过定点,并求出定点坐标.

【答案】(1); (2).

【解析】

(1)由椭圆右顶点的坐标为A(2,0),离心率,可得a,c的值,由此可得椭圆C的方程;(2)当直线斜率不存在时,设,易得,当直线斜率存在时,直线,与椭圆方程联立,得,由可得,从而得证.

(1)右顶点是,离心率为

所以,∴,则

∴椭圆的标准方程为.

(2)当直线斜率不存在时,设

与椭圆方程联立得:

设直线轴交于点,即

(舍),

∴直线过定点

当直线斜率存在时,设直线斜率为,则直线,与椭圆方程联立,得

,则

∴直线

∴直线过定点舍去;

综上知直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)

(1)求在1次游戏中,

①摸出3个白球的概率;

②获奖的概率;

(2)求在2次游戏中获奖次数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一学年结束后,要对某班的50名学生进行文理分班,为了解数学对学生选择文理科是否有影响,有人对该班的分科情况做了如下的数据统计:

理科人数

文科人数

总计

数学成绩好的人数

25

30

数学成绩差的人数

10

合计

15

(Ⅰ)根据数据关系,完成列联表;

(Ⅱ)通过计算判断能否在犯错误的概率不超过的前提下认为数学对学生选择文理科有影响.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:x2-(a+)x+1≤0 (a∈R,且a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把某校名学生的一次考试成绩(单位:)分成5组得到的频率分布直方图如图所示,其中落在内的频数为180.

1)请根据图中所给数据,求出本次考试成绩的中位数(保留一位小数)

2)从这5组中按分层抽样的方法选取40名学生的成绩作为一个样本,在内的样本中,再随机抽取两名学生的成绩,求所抽取两名学生成绩的平均分不低于70分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

(1)根据表中数据,建立关于的线性回归方程

(2)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据: ,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

几何题

代数题

总计

男同学

女同学

总计

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?

(2)经过多次测试后,甲每次解答一道几何题所用的时间在分钟,乙每次解答一道几何题所用的时间在分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.

(3)现从选择做几何的名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

若关于x的方程有唯一解,且,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc.已知cosC

(1),求△ABC的面积;

(2)设向量,且,求sin(BA)的值.

查看答案和解析>>

同步练习册答案