精英家教网 > 高中数学 > 题目详情

设椭圆=1的焦点为F1、F2,P是椭圆上任意一点,一条斜率为的直线交椭圆于A、B两点,如果当a变化时,总可同时满足:

①∠F1PF2的最大值为;

②直线l:ax+y+1=0平分线段AB.

求a的取值范围.

a>.


解析:

由椭圆的定义及余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2=(|PF1|+|PF2|)2-

2|PF1|·|PF2|(1+cos∠F1PF2).

∴2|PF1||PF2|(1+cos∠F1PF2)=4a2-4c2=4b2.

∵|PF1||PF2|≤()2,

∴2()2(1+cos∠F1PF2)≥4b2.

∴cos∠F1PF2,当且仅当|PF1|=|PF2|时取等号.由于∠F1PF2的最大值为,

=.

∴3a2=4b2,从而椭圆方程为3x2+4y2=3a2.

设AB的方程为y=x+m,代入椭圆方程得4x2+4mx+4m2-3a2=0.

由Δ=16m2-4×4(4m2-3a2)>0a2>m2.而AB的中点M(-,)在l上,

∴-+1=0,解得m=.

代入a2>m2,解得a>.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
5
+
y2
3
=1

(1)在直线l:x-y+2=0上取一点P,过点P且以椭圆E的焦点为焦点的椭圆中,求长轴最短的椭圆C的方程;
(2)设P,Q,R,N都在椭圆C上,F为右焦点,已知
PF
FQ
RF
FN
PF
RF
=0,求四边形PRQN面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A、B分别是以双曲线
x2
16
-
y2
20
=1
的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方,
PA
PF
=0

(I)求椭圆C的方程;
(II)求点P的坐标;
(III)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)设点E、F分别是椭圆C:
x2
a2
y2
b2
=1
(a>b>0)的左、右焦点,过点E垂直于椭圆长轴的直线交椭圆于A、B两点,△ABF是正三角形.
(1)求椭圆的离心率;
(2)设椭圆C的焦距为2,过点P(3,0)且不与坐标轴重合的直线交椭圆C于M、N两点,点M关于x轴的对称点为M',求证:直线M'N过x轴一定点,并求此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,抛物线C:y2=8x的焦点为F.椭圆Σ的中心在坐标原点,离心率e=
1
2
,并以F为一个焦点.
(1)求椭圆Σ的标准方程;
(2)设A1A2是椭圆Σ的长轴(A1在A2的左侧),P是抛物线C在第一象限的一点,过P作抛物线C的切线,若切线经过A1,求证:tan∠A1PA2=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)的右顶点为P(1,0),过C1的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设抛物线C2:y=x2+h(h∈R)的焦点为F,过F点的直线l交抛物线与A、B两点,过A、B两点分别作抛物线C2的切线交于Q点,且Q点在椭圆C1上,求△ABQ面积的最值,并求出取得最值时的抛物线C2的方程.

查看答案和解析>>

同步练习册答案