精英家教网 > 高中数学 > 题目详情

【题目】某企业员工500人参加学雷锋活动,按年龄共分六组,得频率分布直方图如下:

(1)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的各抽取多少人?

(2)在第(1)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.

【答案】(1)1,1,4(2)

【解析】

1)直接利用直方图的性质求出前三组的人数,利用分层抽样的定义求解即可;(2)利用列举法求出6人中随机抽取2人参加社区活动共有种不同结果,其中至少有1人年龄在第3组的有14种,利用古典概型概率公式可得结果.

1)由题知第1,2,3组分别有50,50,200人,共有300人;

现抽取6人,故抽样比例为

因而,第1组应抽取(人),第2组应抽取(人),

3组应抽取(人),

(2)设第1组的人为a,第2组的人为b,第3组的人为c1,c2,c3,c4,现随机抽取2人,择优如下15种不同的结果,每一种结果出现的可能性相等:

ab,ac1,ac2,ac3,ac4,bc1,bc2,bc3,bc4,c1c2,c1c3,c1c4,c2c3,c2c4,c3c4

记事件A至少有1人年龄在第3,则A种有14种结果,

所以由古典概率计算公式得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;

求垂直于直线x+3y-5="0," 且与点P(-1,0)的距离是的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,若对于任意数列满足,则称数列为“数列”.

(Ⅰ)已知数列:是“数列”,求实数的取值范围.

(Ⅱ)是否存在首项为的等差数列为“数列”,且前项和满足,若存在,求出的通项公式,若不存在,请说明理由

(Ⅲ)已知各项均为正整数的等比数列是“数列”,数列不是“数列”,若数列,试判断数列是否“数列”,并且说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体是底面对角线的交点.

求证:(1)

(2)CO∥面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调递增区间;

(2)将函数的图象向左平移个单位后,所得图象对应的函数为.若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= x2的图象在点(x0 x02)处的切线为l,若l也为函数y=lnx(0<x<1)的图象的切线,则x0必须满足(
A. <x0<1
B.1<x0
C. <x0
D. <x0<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出09之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了如下20组随机数:

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

据此估计,该射击运动员射击4次至少击中3次的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

查看答案和解析>>

同步练习册答案