【题目】设数列的前项和为,,.
(1)求数列的通项公式;
(2)设数列满足:
对于任意,都有成立.
①求数列的通项公式;
②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
【答案】(1),.(2)①,.②见解析.
【解析】分析:(1)当时,类比写出,两式相减整理得,当时,求得,从而求得数列的通项公式.;
(2)①将代入已知条件,用与(1)相似的方法,变换求出数列的通项公式;
②由的通项公式分析,得…,假设存在三项,,成等差数列,且,则,即,根据数列的单调性,化简得,将或代入已知条件,即可得到结论.
详解:解:(1)由, ①
得, ②
由①-②得,即,
对①取得,,所以,所以为常数,
所以为等比数列,首项为1,公比为,即,.
(2)①由,可得对于任意有
, ③
则, ④
则, ⑤
由③-⑤得,
对③取得,也适合上式,
因此,.
②由(1)(2)可知,
则,
所以当时,,即,
当时,,即在且上单调递减,
故…,
假设存在三项,,成等差数列,其中,,,
由于…,可不妨设,则(*),
即,
因为,,且,则且,
由数列的单调性可知,,即,
因为,所以,
即,化简得,
又且,所以或,
当时,,即,由时,,此时,,不构成等差数列,不合题意,
当时,由题意或,即,又,代入(*)式得,
因为数列在且上单调递减,且,,所以,
综上所述,数列中存在三项,,或,,构成等差数列.
科目:高中数学 来源: 题型:
【题目】如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则( )
A.△A1B1C1和△A2B2C2都是锐角三角形
B.△A1B1C1和△A2B2C2都是钝角三角形
C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形
D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线()与轴交于点,动圆与直线相切,并且与圆相外切,
(1)求动圆的圆心的轨迹的方程;
(2)若过原点且倾斜角为的直线与曲线交于两点,问是否存在以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个几何体的主视图与左视图是全等的长方形,边长分别是,如图所示,俯视图是一个边长为的正方形.
(1)求该几何体的表面积;
(2)求该几何体的外接球的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.
(1)求该抛物线的方程;
(2)已知抛物线上一点,过点作抛物线的两条弦和,且,判断直线是否过定点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且 = .
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,椭圆的左、右焦点分别为, 也是抛物线的焦点,点为与在第一象限的交点,且.
(1)求的方程;
(2)平面上的点满足,直线,且与交于两点,若,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com