精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣ . (Ⅰ)判断f(x)的奇偶性;
(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.

【答案】解:(Ⅰ)函数f(x)=x﹣ 的定义域是D=(﹣∞,0)∪(0,+∞),

任取x∈D,则﹣x∈D,

且f(﹣x)=﹣x﹣ =﹣(x﹣ )=﹣f(x),

∴f(x)是定义域上的奇函数;

(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2

则f(x1)﹣f(x2)=(x1 )﹣(x2

=(x1﹣x2)+(

=

∵0<x1<x2,∴x1x2>0,

x1﹣x2<0,x1x2+1>0,

<0,

即f(x1)<f(x2),

∴f(x)在(0,+∞)上是增函数.


【解析】(Ⅰ)求出函数f(x)的定义域,利用奇偶性的定义即可判断f(x)是奇函数;(Ⅱ)利用单调性的定义即可证明f(x)在(0,+∞)上是增函数.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,角A、B、C的对边分别为a、b、c.已知(a+c)2﹣b2=3ac
(1)求角B;
(2)当b=6,sinC=2sinA时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】;给定函数① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在区间(0,1)上单调递减的函数序号是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分别为BB1、A1C1的中点.
(Ⅰ)求证:CB1⊥平面ABC1
(Ⅱ)求证:MN∥平面ABC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差d不为0的等差数列,a1=2,Sn为其前n项和.
(1)当a3=6时,若a1 , a3 …, 成等比数列(其中3<n1<n2<…<nk),求nk的表达式;
(2)是否存在合适的公差d,使得{an}的任意前3n项中,前n项的和与后n项的和的比值等于定常数?求出d,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是A,B,C的对边,且2cosA=
(1)若a2﹣c2=b2﹣mbc,求实数m的值;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左、右焦点分别为F1 , F2 , 离心率为e,过F2的直线与椭圆的交于A,B两点,若△F1AB是以A为顶点的等腰直角三角形,则e2=(
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象. (Ⅰ)若函数g(x)有两个零点x1 , x2 , 且x1<4<x2 , 求实数a的取值范围;
(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有 ,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案