精英家教网 > 高中数学 > 题目详情

已知函数数学公式则f-1(1)的值等于 ________.

0
分析:因为1在反函数的定义域中,所以,1必在原函数的值域中,由 1=,解得x的值即为所求.
解答:根据函数与反函数的关系,由 1=
解得x=0,
故f-1(1)=0,
故答案为 0.
点评:本题考查反函数的定义,函数与反函数的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
1
x

(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高三(上)10月月考数学试卷(文科)(解析版) 题型:填空题

已知函数y=f(x)的定义域为R,则下列命题正确的有   
①若,则y=f(x)的周期为2;
②y=f(x-1)与y=f(1-x)的图象关于直线x=0对称;
③若f(x-1)=f(1-x),且(-2,-1)是f(x)的单调减区间,则(1,2)是f(x)的单调增区间;
④若函数y=f(x)的图象关于点(-1,0)对称,则函数y=f(x-2)+1的图象关于点(1,1)对称.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年四川省成都市郫县一中高一(上)期中数学试卷(必修1)(解析版) 题型:填空题

已知函数则f-1(1)的值等于    

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

同步练习册答案