精英家教网 > 高中数学 > 题目详情

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面

(2)求证:平面.

 

【答案】

(1)证明过程详见解析;(2)证明过程详见解析.

【解析】

试题分析:本题主要以四棱锥为几何背景考查线线垂直、线面垂直、面面垂直、线面平行的判定,运用传统几何法证明,突出考查空间想象能力.第一问,利用已知的边长和特殊关系,证明出,所以利用线面垂直的判定定理就会得出平面,再利用面面垂直的判定定理即可;第二问,先利用线面平行的判定定理证明∥平面,通过同位角相等可以得出,再证明平面,再通过面面平行的判定定理得到平面∥平面,所以面内的线平行平面.

试题解析:(Ⅰ)∵是等边三角形,的中点,

.        2分

∵在,        3分

,∴

中,,    4分

是直角三角形.∴

又∵,∴平面

又∵平面,∴平面⊥平面.    6分

(Ⅱ)取的中点,连接

点分别是的中点,∴

平面平面,所以∥平面.         8分

∵点的中点,∴

,∴是等边三角形,∴

平面平面,所以平面

,∴平面∥平面

平面,∴平面.           12分

考点:1.余弦定理;2.勾股定理;3.线面垂直的判定定理;4.面面垂直的判定定理;5.线面平行的判定定理;6.面面平行的判定定理.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ) 求证:平面

(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;

(Ⅱ)求证:平面

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011届河北省邯郸一中高三高考压轴模拟考试文数 题型:解答题

(本小题12分)如图,四棱锥中,
侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.
(1)求与底面所成角的大小;
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省高三12月月考理科数学试卷(解析版) 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;

(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省高三高考压轴模拟考试文数 题型:解答题

(本小题12分)如图,四棱锥中,

侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(1)与底面所成角的大小;

(2)求证:平面

(3)求二面角的余弦值.

 

查看答案和解析>>

同步练习册答案