精英家教网 > 高中数学 > 题目详情
已知是椭圆和双曲线的公共顶
点。是双曲线上的动点,是椭圆上的动点(都异于),且满足,其中,设直线的斜率 分别记为, ,则        
-5

试题分析:∵A,B是椭圆和双曲线的公共顶点,
∴(不妨设)A(-a,0),B(a,0).
设P(x1,y1),M(x2,y2),∵,其中λ∈R,
∴(x1+a,y1)+(x1-a,y1)=λ[(x2+a,y2)+(x2-a,y2)],化为x1y2=x2y1
∵P、M都异于A、B,∴y1≠0,y2≠0.∴
由k1+k2==5,化为(*)
又∵=1,∴,代入(*)化为
k3+k4=,又=1,

∴k3+k4=-=-5.
故答案为-5.
点评:难题,熟练掌握点在曲线上的意义、双曲线和椭圆的方程、向量的坐标运算、斜率的计算公式是解题的关键,同时本题计算能力要求较高。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)抛物线y2=4x的焦点到双曲线的渐近线的距离是(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知,直线, 动点的距离是它到定直线距离的倍. 设动点的轨迹曲线为
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点的距离分别为,试判断是否为常数,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,过椭圆M:右焦点的直线于A,B两点,P为AB的中点,且OP的斜率为.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

顶点在原点,焦点是的抛物线方程( ) .
A.B.C.D.

查看答案和解析>>

同步练习册答案