A. | b=$\frac{1}{2}$且f(a)>f($\frac{1}{a}$) | B. | b=-$\frac{1}{2}$且f(a)<f($\frac{1}{a}$) | ||
C. | b=$\frac{1}{2}$且f(a+$\frac{1}{a}$)>f($\frac{1}{b}$) | D. | b=-$\frac{1}{2}$且f(a+$\frac{1}{a}$)<f($\frac{1}{b}$) |
分析 利用函数的偶函数,求出b,确定函数单调递增,即可得出结论.
解答 解:∵f(x)=loga(a-x+1)+bx(a>0,a≠1)是偶函数,
∴f(-x)=f(x),即loga(ax+1)-bx=loga(a-x+1)+bx,
∴loga(ax+1)-bx=loga(ax+1)+(b-1)x,
∴-b=b-1,∴b=$\frac{1}{2}$,
∴f(x)=loga(a-x+1)+$\frac{1}{2}$x,函数为增函数,
∵a+$\frac{1}{a}$>2=$\frac{1}{b}$,∴f(a+$\frac{1}{a}$)>f($\frac{1}{b}$).
故选C.
点评 本题考查函数的奇偶性、单调性,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,3) | B. | (5,5) | C. | (3,1) | D. | (1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
消费金额(单位:千元) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5] |
频数 | 50 | 200 | 350 | 300 | 100 |
消费金额(单位:千元) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5] |
频数 | 250 | 300 | 150 | 100 | 200 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{2}{9}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com