精英家教网 > 高中数学 > 题目详情
18.已知全集U=R,A={x|x2-7x+10≤0},B={x|x-x2+6<0},求:
(1)A∩B   
(2)∁R(A∪B)    
(3)(∁RA)∪B.

分析 解不等式求出集合A,集合B,结合集合的交集,并集,补集运算的定义,可得答案.

解答 解:∵A={x|x2-7x+10≤0}=[2,5],B={x|x-x2+6<0}=∅,
∴(1)A∩B=∅;
(2)∁R(A∪B)=∁RA=(-∞,2)∪(5,+∞);
(3)(∁RA)∪B=∁RA=(-∞,2)∪(5,+∞).

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的点到直线x-2y+4$\sqrt{2}$=0的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆O:x2+y2=1,圆C:(x-3)2+(y-4)2=16,则两圆的位置关系为相外切.(从相离、相内切、相外切、相交中选择一个正确答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若10x=2,则10-3x等于(  )
A.8B.-8C.$\frac{1}{8}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于x的方程x+log2x=[x]([x]表示不大于x的最大整数)的解有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程$\frac{{x}^{2}}{{25-m}$+$\frac{{y}^{2}}{{16+m}$=1表示焦点在y轴上的椭圆,则m的取值范围是($\frac{9}{2}$,25).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(1)求实数a,b的值;
(2)判断函数f(x)的单调性,并说明理由;
(3)若对任意的t∈(1,4),不等式$f(4-k\sqrt{t})+f(t)>0$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=6,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)满足:对任意x,y∈R都有f(x+y)=f(x)+f(y)-1,且f(1)=-2,则f(-1)=4.

查看答案和解析>>

同步练习册答案