【题目】三棱锥P﹣ABC中.AB⊥BC,△PAC为等边三角形,二面角P﹣AC﹣B的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( )
A.1B.2C.D.
【答案】D
【解析】
由已知作出图象,找出二面角的平面角,设出AB,BC,AC的长,即可求出三棱锥的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有AC长度的字母表示),再设出球心O,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得AC的长度,则三棱锥体积的最大值可求.
如图所示,过点P作PE⊥面ABC,垂足为E,过点E作ED⊥AC交AC于点D,连接PD,
则∠PDE为二面角P﹣AC﹣B的平面角的补角,即有cos∠PDE,
易知AC⊥面PDE,则AC⊥PD,而△PAC为等边三角形,
∴D为AC中点,
设AB=a,BC=b,ACc,
则PE=PDsin∠PDEc,
故三棱锥P﹣ABC的体积为:Vab,
当且仅当a=b时,体积最大,此时B、D、E共线.
设三棱锥P﹣ABC的外接球的球心为O,半径为R,
由已知,4πR2=8π,得R.
过点O作OF⊥PE于F,则四边形ODEF为矩形,
则OD=EF,ED=OF=PDcos∠PDE,PE,
在Rt△PFO中,()2,解得c=2.
∴三棱锥P﹣ABC的体积的最大值为:.
故选:D.
科目:高中数学 来源: 题型:
【题目】某市《城市总体规划(年)》提出到2035年实现“15分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身4个方面构建“15分钟社区生活圈“指标体系,并依据“15分钟社区生活圈”指数高低将小区划分为:优质小区(指数为、良好小区(指数为0.4-0.63、中等小区(指数为0.2~0.4)以及待改进小区(指数为0-0.2)4个等级.下面是三个小区4个方面指标值的调查数据:
注:每个小区”15分钟社区生活圈”指数其中、、、为该小区四个方面的权重,为该小区四个方面的指标值(小区每一个方面的指标值为之间的一个数值)
现有100个小区的“15分钟社区生活圈“指数数据,整理得到如下频数分布表:
(1)分别判断A、B、C三个小区是否是优质小区,并说明理由;
(2)对这100个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取10个小区进行调查,若在抽取的10个小区中再随机地选取2个小区做深入调查,记这2个小区中为优质小区的个数为ζ,求ζ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;
(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,为坐标平面内动点,且成等差数列.
(1)求动点的轨迹方程;
(2)设点的轨迹为曲线,过点作直线交于两点(不与原点重合),是否存在轴上一定点,使得_________.若存在,求出定点,若不存在,说明理由.从“①作点关于轴的对称点,则三点共线;②”这两个条件中选一个,补充在上面的问题中并作答(注:如果选择两个条件分别作答,按第一个解答计分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明和父母都喜爱《中国好声音》这栏节目,年月日晚在鸟巢进行中国好声音终极决赛,四强选手分别为李荣浩战队的邢晗铭,那英战队的斯丹曼簇,王力宏战队的李芷婷,庾澄庆战队的陈其楠,决赛后四位选手相应的名次为、、、,某网站为提升娱乐性,邀请网友在比赛结束前对选手名次进行预测.现用、、、表示某网友对实际名次为、、、的四位选手名次做出的一种等可能的预测排列,是该网友预测的名次与真实名次的偏离程度的一种描述.
(1)求的分布列及数学期望;
(2)按(1)中的结果,若小明家三人的排序号与真实名次的偏离程度都是,计算出现这种情况的概率(假定小明家每个人排序相互独立).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,国家为了鼓励高校毕业生自主创业,出台了许多优惠政策,以创业带动就业.某高校毕业生小张自主创业从事苹果的种植,并开设网店进行销售.为了做好苹果的品控,小张从自己果园的苹果树上,随机摘取150个苹果测重(单位:克),其重量分布在区间内,根据统计的数据得到如图1所示的频率分布直方图.
(1)以上述样本数据中频率作为概率,现一顾客从该果园购买了30个苹果,求这30个苹果中重量在内的个数的数学期望;
(2)小张的网店为了进行苹果的促销,推出了“买苹果,送福袋”的活动,买家在线参加按图行进赢取福袋的游戏.该游戏的规则如下:买家点击抛掷一枚特殊的骰子,每次抛掷的结果为1或2,且这两种结果的概率相同;从出发格(第0格)开始,每掷一次,按照抛掷的结果,按如图2所示的路径向前行进一次,若掷出1点,即从当前位置向前行进一格(从第格到第格,),若掷出2点,即从当前位置向前行进两格(从第格到第格,),行进至第3l格(获得福袋)或第32格(谢谢惠顾),游戏结束.设买家行进至第格的概率为,.
(ⅰ)求、,并写出用、表示的递推式;
(ⅱ)求,并说明该大学生网店推出的此款游戏活动,是更有利于卖家,还是更有利于买家.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com