精英家教网 > 高中数学 > 题目详情
7.如图,网格上小正方形的边长为1,粗线画出的是一个三棱锥的三视图,该三棱锥的外接球的体积记为V1,俯视图绕底边AB所在直线旋转一周形成的几何体的体积记为V2,则V1:V2(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

分析 三视图复原的几何体如图,它是底面为等腰直角三角形,一条侧棱垂直底面的一个顶点,它的外接球,就是扩展为长方体的外接球,进而得出.

解答 解:三视图复原的几何体如图,
它是底面为等腰直角三角形,一条侧棱垂直底面的一个顶点,
它的外接球,就是扩展为长方体的外接球,
外接球的直径是2$\sqrt{2}$,
该几何体的外接球的体积V1=$\frac{4}{3}$π$(\sqrt{2})^{3}$=$\frac{8\sqrt{2}π}{3}$.
V2=2×($\frac{1}{3}×{1}^{2}$×π)=$\frac{2}{3}$π,
∴V1:V2=$\frac{\frac{8\sqrt{2}π}{3}}{\frac{2}{3}π}$=4$\sqrt{2}$.
故选:A.

点评 本题考查了三棱锥的三视图、圆锥与球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax2-lnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)是否存在实数a,使函数f(x)在区间(0,e]上的最小值为$\frac{3}{2}$,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设e为自然对数的底数,若函数f(x)=ex(2-ex)+(a+2)•|ex-1|-a2存在三个零点,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=-\frac{1}{3}{x^3}+{x^2}+({{m^2}-1})x$(x∈R),其中m>0为常数.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等腰直角三角形ABC中,AB=AC=a,且AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,这时二面角B-AD-C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,a1=2,a4=16则公比q为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知焦点在x轴上的双曲线的渐近线方程为y=±$\frac{3}{4}$x,则该双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\sqrt{2}$C.$\frac{5}{4}$D.$\frac{5}{3}$或$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知空间四边形ABCD中,AB=CD=6,BC=DA=8,BD=AC=7,求异面直线AB与CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)与x轴的两个交点分别是(-3,0),(5,0),且f(2)=15.
(1)求函数f(x)的解析式;
(2)令g(x)=(2-2m)x-f(x),求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

同步练习册答案