精英家教网 > 高中数学 > 题目详情

【题目】已知是各项均为正数的等比数列,.

1)求的通项公式;

2)设,求数列的前n项和.

【答案】1;(2.

【解析】

(1)本题首先可以根据数列是等比数列将转化为转化为,再然后将其带入中,并根据数列是各项均为正数以及即可通过运算得出结果;

(2)本题可以通过数列的通项公式以及对数的相关性质计算出数列的通项公式,再通过数列的通项公式得知数列是等差数列,最后通过等差数列求和公式即可得出结果。

(1)因为数列是各项均为正数的等比数列,

所以令数列的公比为

所以,解得(舍去)

所以数列是首项为、公比为的等比数列,

(2)因为,所以

所以数列是首项为、公差为的等差数列,

本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过作互相垂直的两条直线分别与相交于四点.

(1)四边形能否成为平行四边形,请说明理由;

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售甲、乙两种商品所得利润分别是(单位:万元)和(单位:万元),它们与投入资金(单位:万元)的关系有经验公式,今将万元资金投入甲、乙两种商品,其中对甲商品投资(单位:万元).

1)试建立总利润(单位:万元)关于的函数关系式,并写出函数的定义域;

2)问:如何分配资金,才能使得总利润(单位:万元)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱的侧面是正方形,点是侧面的中心,是棱的中点

(1)求证:平面

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房产中介公司201791日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:

(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司20186月份的二手房成交量(计算结果四舍五入取整数).

(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.

参考数据:.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中N≥2,且R.

(1)当时,求函数的单调区间;

(2)当时,令,若函数有两个极值点,且,求的取值范围;

(3)当时,试求函数的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数),过点且倾斜角为的直线交曲线两点.

(Ⅰ)求曲线的直角坐标方程和直线的参数方程;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,短轴的两个端点分别为A,B,且满足:,且椭圆经过点

(1)求椭圆的标准方程;

(2)设过点M的动直线(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。

查看答案和解析>>

同步练习册答案